Паровое отопление от печки Как сделать паровое отопление от печки

Как сделать паровое отопление от печки?

Печка с теплообменником: как сделать водяное отопление от печи

С помощью традиционного печного отопления, можно достаточно эффективно протапливать небольшие помещения без внутренних перегородок, примыкающих к стене, в которую оно вмонтировано. Недостатком такой системы является то, что циркуляция теплого воздуха ограничена стенами.

Интенсивность нагрева комнат зависит от степени отдаленности от печки. Использовать такой вариант для отопления жилого дома или коттеджа в несколько этажей не представляется возможным.

Для увеличения производительности некоторые хозяева решают установить водяной контур в уже существующую или еще строящуюся печку или камин. Как сделать водяное отопление от печи? Какие преимущества и недостатки имеет такое решение?

Монтаж водяного отопления от печи

Существует два основных способа сделать водяное отопление с помощью печи. Каждый из них имеет свои преимущества и недостатки.

  • Сложить печку с водяным контуром. Готовая печь имеет высокий КПД 85-90%. Практически все получаемое тепло используется по назначению для нагревания теплоносителя. Процент неиспользуемого остатка тепловой энергии незначителен.Недостатком такой системы является необходимость постоянного контроля над горением топлива и циркуляции жидкости в системе отопления. Перегрев теплоносителя в данном случае может привести к взрыву контура. Чтобы снизить вероятность закипания жидкости сделать водяное отопление от печки рекомендуют с использованием трубы не меньше 5 см в разрезе.
  • Установить водяной контур в уже построенную печь. Этот вариант не требует больших материальных затрат на переоборудование. Недостатком такого решения является ограничения в размерах связанные с объемом топочной камеры. Во время монтажа обязательным является соблюдение рекомендаций относительно диаметра используемой трубы.

Каждый из вышеизложенных вариантов водяного отопления из печки имеет свои недостатки и положительные стороны. Минусы такой системы отопления можно уменьшить благодаря установке дополнительного циркуляционного оборудования.

Что необходимо учитывать при монтаже водяного контура

Единственным существенным недостатком того чтобы сделать водяное отопление с помощью печки заключается в опасности перегревания контура. Поэтому при его монтаже необходимо учитывать следующие рекомендации:

  1. Контур для печи. Лучше всего либо приобрести готовый регистр, либо заказать его в мастерской по обслуживанию печного оборудования. Мастер, который специализируется на этом, сможет произвести правильный замер и изготовить наиболее подходящий водяной контур.
  2. Толщина труб. Для теплообменника лучше всего использовать толстостенные трубы от 3-5 мм. Эта толщина является оптимальной, чтобы не допустить перегрева системы и одновременно поспособствовать быстрому нагреву теплоносителя.
  3. Зазор между стенкой и регистром. Этот фактор также способствует тому, чтобы водяной контур не перегревался, и для его работы было достаточно воздуха. Вполне достаточно будет оставить зазор в 1 см. толщиной. Этот же принцип необходимо учитывать, если необходимо встроить в печь теплообменник.

Установленный в топочную камеру теплообменник уменьшает ее полезный объем, что не критично, если печное оборудование строится с нуля. Переоборудуя дровяную печь под водяное отопление необходимо учитывать этот коэффициент, так как он существенно влияет на общий объем топлива, который может вместиться от одной закладки.

Для изготовления регистра лучше всего использовать качественный металлопрокат. Использование термостойких труб позволяет избежать их прогорания. В дальнейшем устранение такой неисправности приведет к демонтажным работам, что связано с существенными затратами.

Дополнительное оборудование для печного отопления

Недостатками встраивания в печь теплообменника является вероятность закипания жидкости в водяном контуре во время топки помещения. Чтобы избежать этого, рекомендуется установить циркуляционное оборудование, которое способствует равномерному распределению тепла по всему зданию. Кроме него потребуется также установить:

  • ИБП. Такое устройство помогает обеспечить циркуляционный насос достаточным количеством электроэнергии. Это может понадобиться в случае общего отключения электричества.
  • Байпас. Устройство позволяет использовать естественную или принудительную циркуляцию в зависимости от наличия электроэнергии. Последние модели такого оборудования позволяют автоматически переключать режим. Этот блок особенно необходим, если в кирпичную печь сделать водяное отопление.

Согласно статистике встроить в печь котёл водяного отопления более выгодно, чем использовать некоторые модели твердотопливного оборудования. К тому же, пользоваться ей достаточно удобно, особенно если у нее есть варочная поверхность или духовой шкаф.

Правильно изготовленный и установленный контур позволяет снизить риск перегрева, в остальных вопросах печь с водяным контуром или регистром более эффективный метод обогрева жилых помещений, чем твердотопливный котел.

Как устроить безопасное паровое отопление в частном доме от кирпичной печи своими руками

В отдаленных поселках многие, взвесив все за и против, отдают предпочтение печному отоплению. Автономия имеет массу преимуществ, вот только качественно и равномерно обогреть дом более 50 м2 с помощью печи трудно. Разве что, если установить в ней теплообменник, к которому подключить батареи. Если в качестве теплоносителя в такой системе будет циркулировать вода, то называться она будет водяным отоплением, если пар – паровым.

Иногда эти два вида обогрева путают. Однако они имеют свои различия, преимущества и недостатки. Кроме того, паровое отопление давно запрещено в жилых домах из-за небезопасной эксплуатации. Но оно стоит намного дешевле водяного и, кроме того, есть меры защиты. Правда, нельзя сказать о простоте монтажа, напротив, чтобы устроить паровое отопление в частном доме, да ещё и от кирпичной печи, необходимо приложить немало сил и времени. Но, обо всем по порядку.

Радиатор отопления, подключенный к печи

Различия между паровым и водяным отоплением

Паровое отопление работает по принципу:

  • сначала в емкости до кипения нагревается вода и преобразуется в пар;
  • пар по трубам переходит в радиаторы, отдавая тепло;
  • в батареях пар конденсируется, превращаясь снова в воду;
  • вода стекает по отводам в расширительный бак и возвращается в теплообменник.

В отличие от водяного отопления, паровое дает большую теплоотдачу, в три раза быстрее прогревает помещение, обладает эргономичностью. Для него требуется малогабаритное оборудование, что, собственно и удешевляет систему в целом. Ещё один плюс: в покинутом доме трубы в холодное время года не замерзают. Поэтому легко запустить паровое отопление, приехав зимой на дачу, а уезжая, убедиться в полном прогорании топлива.

Кстати, в качестве генератора для парового отопления можно использовать не только печи, но и котлы, действующие на отработанном масле. Но обычно такую систему устанавливают в гаражах и подсобных помещениях из соображений экологичности.

Читайте также:
Обзор электрических обогревателей от компании DeLonghi

Устройство котла функционирующего на отработанном масле

Недостатки парового отопления и способы их устранения

  • радиаторы от пара нагреваются выше 100°С, из-за чего они представляют опасность, особенно для детей и животных;
  • система парового отопления работает шумно;
  • управление температурным режимом затруднено;
  • невозможность устройства водяных теплых полов.

Первый недостаток можно устранить, защитив радиаторы и поводящие трубы экранами. Существует огромный выбор этих декоративных элементов интерьера из дерева и пластика.

Деревянный экран защитит от случайного прикосновения к раскаленным радиаторам

Шумовой эффект в системе можно значительно снизить, если использовать антишумовые кронштейны для радиаторов при их монтаже, сам же парогенератор устроить в отдельном помещении.

Третий пункт устранить трудно. А вот для четвертого решение есть – водяные теплые полы при желании можно заменить пленочными инфракрасными.

Внимание! Кирпичную печь с парогенератором нежелательно планировать одновременно под отопление и приготовление пищи, так как летом её все равно использовать будет невозможно. Либо, придется придумать на теплый период альтернативный вариант. Например, сделать летнюю печь на открытом воздухе.

Также нельзя использовать в системе пластиковые трубы, они не выдержат температурного режима.

Схема установки парового отопления от печи

  • Естественная и принудительная система циркуляции

Система, работающая по принципу естественной циркуляции, требует расположения теплообменника ниже уровня радиаторов и всех труб под углом. Для принудительной системы требуется насос, обеспечивающий бесперебойную циркуляцию теплообменника.

Схема с естественной циркуляцией

Схема с принудительной циркуляцией

Схемы также бывают одно- и двухтрубные.

  • Однотрубная схема парового отопления частного дома

Эта схема работает по принципу последовательного подсоединения радиаторов. Теплоноситель передвигается по трубе, переходя из одной батареи в другую. В результате, первый радиатор оказывается самым горячим, а последний – практически остывшим. Поэтому рекомендуется использовать такую схему для помещений с небольшой площадью – от 40 до 80 м2.

Однотрубная схема отопления

Эта система больше подходит для домов с большими площадями, двухэтажных коттеджей. Отличается тем, что радиаторы в ней соединяются параллельно, с помощью двух труб: подводящей и отводящей (конденсирующей). В этой схеме теплоноситель поставляется ко всем радиаторам с одинаковой температурой, так как не успевает остывать.

Двухтрубная схема отопления

Оборудование и материалы

Для устройства парового отопления понадобятся:

  • радиаторы (под каждое окно);
  • теплообменник – по сути, водотрубный котел или парогенератор;
  • трубы для паропровода и отвода конденсата – предпочтение лучше отдать стойким к высоким температурам материалам: оцинкованной стали или меди;
  • колена, соединители, хомуты для труб, кронштейны для радиаторов, запорная арматура: вентили, краны для выпуска воздуха;
  • гидравлический затвор, применяемый с целью возможности осушки паропровода;
  • редукционный клапан для снижения давления в системе;
  • редукционно-охладительная установка;
  • сварочный аппарат;
  • емкость для сбора конденсата;
  • насос.

Редукционный клапан для снижения давления в системе

Дорогостоящее оборудование лучше взять в аренду.

Теплообменник

Теплообменник для кирпичной печи придется изготовить самостоятельно или заказать. Для этого понадобятся трубы из металла, толщиной стенки от 2,5 мм и сварочный аппарат. Соединить их можно как на рисунке или сделать в виде змеевика. Главное, следить за качеством сварных швов. Расчет делается приблизительно так: 1 м2 поверхности змеевика отдает до 9 кВт.

После того, как конструкция будет изготовлена, необходимо её проверить. Для этого следует залить в неё воду и убедиться, что нет течи. Однако этот способ мало информативен, поскольку сварные швы могут иметь шлаковые включения, которые при отсутствии избыточного давления не будут обнаружены.

Лучше всего проверять качество швов способом «керосин на мел». Для этого необходимо обвести мелом все сварные швы и залить внутрь конструкции керосин. В случае наличия мельчайшей поры, мел потемнеет, поскольку в неё просочится керосин.

Контур для кирпичной печи

Ещё вариант теплообменника для печи

Последовательность работ

Теплообменник встраивается в печь на этапе её кладки прямо в топку

Теплообменник встраивается в печь

Нужно учитывать, что если планируется делать печь под варку, то труб в верхней части быть не должно, иначе они будут мешать. Тогда лучше сделать теплообменник по такому принципу

Далее, согласно схеме, под окнами монтируют радиаторы. К ним подсоединяют подводящие и отводящие трубы. Для естественной циркуляции – с небольшим уклоном в 3 мм на метр. Каждый конвектор следует снабдить краном для выпуска воздуха.

В целях безопасности желательно установить запорные краны перед каждым радиатором и один перед всей системой. В её начале следует также поставить редукционный клапан и охладительную установку.

В конце системы ставят бак для сбора конденсата, с которого тоже под уклоном перетекает вода обратно в теплообменник. Не желательно для этой цели использовать мембранный расширитель, так как он рассчитан на t до 85° С.

В системе принудительной циркуляции, в обратном трубопроводе, перед печью устанавливают насос.

Нюансы при использовании парового отопления от печи

В кирпичных печах с теплообменником в дымоходе образуется больше сажи, чем обычно, и его приходиться чаще чистить.

При самотечной системе печь придется сооружать в подвальном помещении, чтобы конденсат свободно стекал в нижнюю точку.

Не следует пренебрегать установкой клапанов – они необходимы для безопасности и предотвращения аварий. Поскольку для насоса требуется электричество, нужно учитывать, что в случае отключения от сети остановить работу печи будет невозможно.

Отопление в деревянном доме

Паровое отопление в деревянном доме устанавливается по тому же принципу, что и в кирпичном. Необходимо лишь соблюдать меры пожарной безопасности – защищать деревянные поверхности от перегрева.

Как сделать паровое отопление своими руками в частном доме

Чтобы в доме жилось комфортно, требуется тепло. Неважно, насколько красиво жилище изнутри и сколько людей оно вмещает, если в нём не решена проблема обогрева. Каждый владелец дома подходит к этому вопросу индивидуально, руководствуясь климатическими условиями местности и собственными возможностями. Некоторые люди предпочитают паровое отопление. Своими руками такую систему можно собрать без особых усилий.

Как работает система

Не стоит путать водяное и паровое отопление дома. У них имеется множество функциональных различий, несмотря на внешнее сходство.

Оба этих вида имеют составные части:

  • котёл;
  • радиаторы;
  • трубы.

Паровое отопление считается эффективным, можно обойтись небольшим количеством батарей

Читайте также:
Особенности изготовления шлакобетона своими руками

Пар — теплоносителем для парового отопления частного дома. Своими руками сделать можно такую систему, следуя инструкции по сборке и монтажу компонентов. Для водяной системы роль носителя играет вода. Котёл испаряет воду, а не нагревает её. Пары теплоносителя перемещаются по трубам и становятся источником комфортной температуры в доме. Пар остывает внутри, после чего происходит его конденсация. При этом 1 кг пара преобразуется в 2000 килоджоулей тепла. Для сравнения — вода, остывающая на 50°С, обеспечивает только 120 кДж.

В этом видео вы узнаете о циркуляции системы:

Теплоотдача пара в несколько раз выше, что объясняет высокую эффективность такого типа отопления. Формируемый внутри радиатора конденсат переходит в нижнюю часть и самостоятельно перемещается к котлу. Выделяют несколько разновидностей отопительных систем. При этом спецификация осуществляется по способу возврата теплоносителя, который трансформировался в конденсат.

  1. Замкнутая. Контуры в данном случае отсутствуют. Соответственно, конденсат перемещается по трубам, которые лежат под некоторым углом. Он переходит прямо в котел для дальнейшего нагрева.
  2. Разомкнутая. Здесь присутствует накопительный резервуар. Конденсат попадает в него из радиаторов, насос участвует в его обратном закачивании в котел.

Почему пар лучше

При желании можно сделать такое отопление у себя в жилище, но эти системы не слишком популярны сегодня. Скорее, к нему прибегают единицы. Вместе с тем можно выделить как достоинства, так и недостатки таких систем.

Паровое отопление бывает однотрубнын и двухтрубным

Плюсами можно считать:

  1. Эффективность обогрева. Она довольно высока. Вот почему даже небольшого количества радиаторов хватит для обслуживания больших помещений. Иногда удается обойтись даже без них, установив только трубы.
  2. Пониженная инерционность. Она способствует быстрому прогреву отопительных контуров. Соответственно, как только проходит несколько минут после включения котла, в помещениях чувствуется тепло.
  3. Почти нулевые теплопотери. По этой причине такая система является выгодной.
  4. Возможность использовать относительно редко. В трубах имеется небольшое количество жидкости, поэтому нет необходимости в разморозке системы. В качестве альтернативного варианта допустимо применение в дачном домике, куда приезжают время от времени.

Паровое отопление в частном доме своими руками по схеме можно обустраивать при наличии определенного опыта. Основной плюс здесь — экономичность. С самого начала для обустройства требуются скромные затраты. В процессе применения системы тратятся незначительные суммы.

Обзор системы отопления:

Но даже при таком внушительном ассортименте достоинств имеют место значимые недостатки. Они связаны с применением водяного пара в качестве теплоносителя: его температура может быть достаточно высокой. Соответственно, все компоненты системы прогреваются до +100°С и даже больше.

Нельзя прикасаться к такой поверхности даже мимолетно, чтобы не заработать ожог. Поэтому любые трубы и радиаторы непременно закрывают. Воздух в таком помещении активно перемещается. Когда используется паровое отопление, воздух становится сухим, приходится прибегать к увлажнителю.

Далеко не все отделочные материалы, которые применяются в помещении, могут выдерживать соседство с предельно раскаленными радиаторами и трубами, поэтому их выбор ограничен. Лучшим вариантом будет цементная штукатурка, которую покрывают термостойкой краской. Всё остальное не гарантирует безопасности. Кроме того, проходящий по трубе пар — источник большого шума.

Система недостаточно хорошо регулируется. Теплоотдача не поддается контролю, поэтому помещение легко перегревается. Ситуацию может решить установка автоматики, которая будет самостоятельно отключать паровые котлы для частного дома при перегреве и включать их при остывании комнаты. Другим трудоемким, но более реальным способом является монтаж параллельных веток, которые будут работать в случае необходимости. Основной минус — аварийная опасность системы.

Если труба или радиатор получили серьезные повреждения, наружу вырвется горячий пар под давлением. Это небезопасно, в многоквартирных домах такие варианты не используются. Собираясь сделать паровое отопление, владелец частного домовладения может получить на это разрешение, но только под собственную ответственность.

Основные компоненты

Ключевой компонент системы — котел. Основным его предназначением считается преобразование воды в пар. В дальнейшем он переходит в трубопровод.

Котел должен быть достаточно мощным, чтобы потянуть одновременно два этажа

Элементами конструкции здесь считаются:

  • система труб;
  • коллекторы;
  • барабан.

Также обязательно применяется емкость с водой. Она носит название водного пространства. Здесь присутствует особое средство испарения, играющее роль разделяющего элемента.

Паровое пространство

Здесь можно ставить дополнительное оборудование. Оно может быть полезно, если требуется сепарация пара. Интенсивный обмен между паром и водой — основа работы котла. Устройства для обогрева делят на водо- и жаротрубные. В последнем случае нагретые газы движутся в каналах труб, обустроенных в емкости с водой.

Водотрубные модификации работают по немного иному принципу. Здесь движется вода по каналам, построенным внутри камеры с газами. Сначала она нагревается, после чего начинает кипеть. Вода перемещается в естественном режиме внутри котла.

В любых разновидностях котлов действует одно и то же правило превращения воды в пар. Сначала жидкость проводят в резервуар, находящийся в верхней зоне устройства. Далее она перетекает в коллектор и поднимается в расположенный наверху барабан, перемещаясь через область нагрева. Внутри трубы формируется пар, идущий наверх. Он может двигаться сквозь сепаратор, где отделяется от жидкости. Дальше он переходит в паропровод.

Отопление можно без труда установить своими руками

В котле можно использовать различные варианты топлива. В соответствии с этими особенностями конструкция может быть видоизменена. Перемены могут касаться и типа работы камеры сгорания. Допустим, колосниковая решетка потребуется для тех случаев, когда задействуется твердое топливо. В то же время понадобятся особые горелки, если топливо газообразное либо жидкое. Смешанные варианты более удобны и практичны.

Радиаторы и система труб

Показатели температуры в паровой системе находятся в пределах +100…+130°С. По сравнению с водяными они намного выше. Вот почему для обустройства систем похожее оборудование применять не рекомендовано. Это касается труб из полипропилена и металлопластика. Предельные рабочие показатели указанных материалов лежат в пределах +90…+100°С, применять их строго запрещено.

Для магистрального трубопровода допустимы 3 разновидности труб. Стальные считаются наиболее дешевыми изделиями. Им удается выдерживать показатель температуры +130°С.

Конденсат, образуемый внутри деталей, приводит к быстрому разрушению материала труб. Нельзя забывать, что сталь неустойчива к коррозии. Агрессивная среда теплоносителя усиливает этот недостаток. Необходимо соединение с помощью сварки, что требует больших временных и трудовых затрат. Лучше брать трубы из оцинкованной стали. Эти изделия противостоят повышенным температурам и предполагают использование резьбового метода для соединения. Такой подход существенно упрощает рабочий процесс. Единственное, что может послужить препятствием для приобретения таких изделий, — их высокая цена.

Читайте также:
Проектирование щита освещения

Как сделать отопление в доме:

Еще одним идеальным вариантом считаются трубы из меди. Материал пластичный, не боится термического воздействия, прочный, не подвержен коррозии. Чтобы соединить медные компоненты, прибегают к пайке. Медный трубопровод долговечный, однако стоит дорого.

Получается, что в плане сочетания цены и качества следует отдавать предпочтение стальным трубам, у которых имеется оцинкованное или антикоррозионное покрытие.

Классификация систем

Вариаций, как провести самодельное паровое отопление, существует много. Это одно- и двух-трубные разновидности. В первом случае осуществляется непрерывное движение пара по трубе. Сначала он передает тепло батареям, после чего трансформируются в жидкость. Дальше он имеет вид конденсата. Чтобы носителю не столкнуться с препятствиями, трубу следует подбирать довольно большого диаметра.

Однотрубные и двутрубные

Однотрубные системы отопления имеют немало недостатков. Нагрев радиаторов у них может значительно отличаться: области около котла нагреваются в большей степени. Чем дальше от них, тем этот показатель меньше. Заметить такую разницу, с другой стороны, можно лишь в больших помещениях. В двухтрубной системе пар перемещается по одной трубе, а конденсат уходит по противоположной. За счёт этого удаётся обеспечивать равную температуру во всех радиаторах.

У паровой системы отопления сравнительно маленькие теплопотери

Одновременно расход труб существенно увеличивается. Как паровое, так и водяное отопление бывает одно- и двухконтурным. В первом случае система применима для отопления помещений. Во втором она выполняет роль нагревателя воды для бытовых ситуаций.

Прочие разновидности

Разводка отопления тоже может быть различной. Выделяют три основных варианта:

  1. С верхней разводкой. Магистральный паропровод находится по уровню выше, нежели отопительные приборы. От него отходят трубы по направлению к радиаторам. Около поверхности пола обустраивается провод для конденсата. Такую систему проще реализовать, она лучше работает.
  2. С нижней разводкой. Магистраль устанавливается по уровню ниже, нежели паровые отопительные приборы. Получается, что одна и та же труба, которая должна иметь увеличенный диаметр, устроена таким образом, что провоцирует разгерметизацию и гидроудары. Дело в том, что в одном направлении идет движение пара, тогда как прямо навстречу ему движется конденсат.
  3. Со смешанной разводкой. Труба, пропускающая пар, фиксируется несколько выше радиаторов по уровню. Все остальные особенности совпадают с вариантом обустройства верхней разводки. За счёт этого удается сохранять все ее положительные качества. Основной минус — травмоопасность. Объясняется она облегченным доступом к нагретым трубам.

Есть и другая классификация. Она основывается на показателе внутреннего давления системы. Основными являются такие виды:

  1. Вакуумные. Система абсолютно герметична. В ней присутствует формирующий вакуум-насос. Пар конденсируется при пониженной температурной отметке. Получается, что система более-менее безопасна.
  2. Атмосферные. По сравнению с атмосферным давлением аналогичный показатель в полости контура выше в несколько раз. Если случится авария, это приведет к негативным последствиям. Функционирующие в подобной системе радиаторы могут нагреваться до критических отметок.

Несмотря на значительные ограничения в применении парового отопления, оно используется в качестве автономного. Нередко причиной тому являются незначительные затраты на его обустройство. Принимая решение о создании такой системы, следует понимать, что пар играет здесь роль теплоносителя со всеми вытекающими из этого последствиями.

Паровые турбины

Паровые турбины – принцип работы

Паровые турбины работают следующим образом: пар, образующийся в паровом котле, под высоким давлением, поступает на лопатки турбины. Турбина совершает обороты и вырабатывает механическую энергию, используемую генератором. Генератор производит электричество.

Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Мощность паровых турбин единичной установки достигает 1000 МВт.

В зависимости от характера теплового процесса паровые турбины подразделяются на три группы: конденсационные, теплофикационные и турбины специального назначения. По типу ступеней турбин они классифицируются как активные и реактивные.

Конденсационные паровые турбины

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование). Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока вырабатываемой энергии является одним из главных показателей качества отпускаемой электроэнергии. Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов. Резкое падение электрической частоты влечёт за собой отключение от сети и аварийный останов энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Все паровые турбины для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).

Схема работы конденсационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении, кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть полученной энергии используется для генерации электрического тока.

Читайте также:
Переносные колонки с микрофоном: беспроводная портативная акустическая система на аккумуляторе для пения и другие модели

Теплофикационные паровые турбины

Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Но основной конечный продукт таких турбин — тепло. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением.

У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.

В турбинах с регулируемым отбором часть пара отводится из 1 или 2 промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования. Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.

У турбин с отбором и противодавлением часть пара отводится из 1 или 2 промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.

Схема работы теплофикационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) направляется на рабочие лопатки цилиндра высокого давления (ЦВД) паровой турбины (3). При расширении, кинетическая энергия пара преобразуется в механическую энергию вращения ротора турбины, который соединен с валом (4) электрического генератора (5). В процессе расширения пара из цилиндров среднего давления производятся теплофикационные отборы, и из них пар направляется в подогреватели (6) сетевой воды (7). Отработанный пар из последней ступени попадает в конденсатор, где и происходит его конденсация, а затем по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть тепла, полученного в котле используется для подогрева сетевой воды.

Паровые турбины специального назначения

Паровые турбины специального назначения обычно работают на технологическом тепле металлургических, машиностроительных, и химических предприятий. К ним относятся турбины мятого (дросселированного) пара, турбины двух давлений и предвключённые (форшальт).

  • Турбины мятого пара используют отработавший пар поршневых машин, паровых молотов и прессов, имеющих давление немного выше атмосферного.
  • Турбины двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней.
  • Предвключённые турбины представляют собой агрегаты с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих турбин направляют в другие с более низким начальным давлением пара. Необходимость в предвключённых турбинах возникает при модернизации электростанций, связанной с установкой паровых котлов более высокого давления, на которое не рассчитаны ранее установленные на электростанции турбоагрегаты.
  • Также к турбинам специального назначения относятся и приводные турбины различных агрегатов, требующих высокой мощности привода. Например, питательные насосы мощных энергоблоков электростанций, нагнетатели и компрессоры газокомпрессорных станций и т. д.

Обычно стационарные паровые турбины имеют нерегулируемые отборы пара из ступеней давления для регенеративного подогрева питательной воды. Паровые турбины специального назначения не строят сериями, как конденсационные и теплофикационные, а в большинстве случаев изготовляют по отдельным заказам.

Как сделать паровую турбину

Идея практического применения энергии пара далеко не нова, использование паровых турбин в промышленных масштабах давно стало частью нашей жизни. Именно эти агрегаты, установленные на различных электростанциях и ТЭЦ, на 99% снабжают электричеством наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип преобразования тепловой энергии в электрическую у себя дома. Для этого используется самодельная паровая турбина минимальных размеров и мощности. О том, как ее собрать в домашних условиях, и пойдет речь в данной статье.

Как работает паровая турбина?

В сущности, паровые турбины являются составной частью сложной системы, призванной преобразовать энергию топлива в электричество, иногда – в тепло.

На данный момент этот способ считается экономически выгодным. Технологически это происходит следующим образом:

  • твердое или жидкое топливо сжигается в паровой котельной установке. В результате рабочее тело (вода) обращается в пар;
  • полученный пар дополнительно перегревается и достигает температуры 435 ºС при давлении 3.43 МПа. Это необходимо для того, чтобы добиться максимального КПД работы всей системы;
  • по трубопроводам рабочее тело доставляется к турбине, где равномерно распределяется по соплам с помощью специальных агрегатов;
  • сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Таким образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть принцип действия паровой турбины;
  • вал генератора, представляющего собой «электродвигатель наоборот», вращается ротором турбины, в результате чего вырабатывается электроэнергия;
  • отработанный пар попадает в конденсатор, где от соприкосновения с охлажденной водой в теплообменнике переходит в жидкое состояние и насосом снова подается в котел на прогрев.

Примечание. В лучшем случае КПД паровой турбины достигает 60%, а всей системы – не более 47%. Значительная часть энергии топлива уходит с теплопотерями и расходуется на преодоления силы трения при вращении валов.

Ниже на функциональной схеме показан принцип работы паровой турбины совместно с котельной установкой, электрическим генератором и прочими элементами системы:

Чтобы не допускать снижения эффективности работы, на валу ротора располагается максимальное расчетное число лопаток. При этом между ними и корпусом статора обеспечивается наименьший зазор посредством специальных уплотнений. Простыми словами, чтобы пар «не крутился вхолостую» внутри корпуса, все зазоры минимизируются. Лопатка сконструирована таким образом, чтобы расширение пара продолжалось не только на выходе из сопла, но и в ее углублении. Как это происходит, отражает рабочая схема паровой турбины:

Следует отметить, что рабочее тело, чье давление после попадания на лопатки снижается, после рабочего цикла в первом блоке не сразу попадает в конденсатор. Ведь оно еще располагает достаточным запасом тепловой энергии, а потому по трубопроводам пар отправляется во второй блок низкого давления, где снова воздействует на вал посредством лопаток другой конструкции. Как показано на рисунке, устройство паровой турбины может предусматривать несколько таких блоков:

Читайте также:
Обозначение лестницы на плане

1 – подача перегретого пара; 2 – рабочее пространство блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.

Для справки. Скорость вращения ротора генератора может достигать 30 000 об/мин, а мощность паровой турбины – до 1500 МВт.

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Заключение

К сожалению, конструктивно паровые машины достаточно сложны и сделать дома турбину, чья мощность достигала хотя бы 500 Вт, весьма затруднительно. Если стремиться к тому, чтоб соблюдалась схема работы турбины, то затраты на комплектующие и потраченное время будут неоправданными, КПД самодельной установки не превысит 20%. Пожалуй, проще купить готовый дизель-генератор.

Паровая турбина: устройство, принцип работы и рекомендации по изготовлению

Идея практического применения энергии пара далеко не нова, использование паровых турбин в промышленных масштабах давно стало частью нашей жизни. Именно эти агрегаты, установленные на различных электростанциях и ТЭЦ, на 99% снабжают электричеством наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип преобразования тепловой энергии в электрическую у себя дома. Для этого используется самодельная паровая турбина минимальных размеров и мощности. О том, как ее собрать в домашних условиях, и пойдет речь в данной статье.

Назначение


Подобного рода агрегаты имеет смысл использовать в тех отраслях современной промышленности или бытовой сферы, где наблюдается достаточное большое количество парообразований, которые можно использовать в качестве преобразователя в электроэнергию. Именно генераторы парового типа получили широкое использование в котельных установках, где они образуют некую тепловую электростанцию вместе котлом и турбиной.

Такие агрегаты позволяют существенно экономить на своей эксплуатации, а также снизить затраты на получение электрической энергии. Именно поэтому, паровые установки зачастую считаются одними из основных рабочих узлов многих электростанций.

Кроме того, если изучить принцип действия, а также конструктивные особенности подобных паровых генераторов, можно попытаться реализовать их своими руками, с помощью определенных средств. Однако, о данной возможности пойдет речь чуть позже.

Устройство и принцип действия


По своим конструктивным особенностям, котельные установки обладают достаточно схожей структурой. В их состав входит несколько рабочих узлов, которые принято считать определяющими — непосредственно сам котел, электрический генератор и турбина. Последние два составляющих образуют кинетическую связь между собой, а одной из разновидностей подобных систем является турбинный электрогенератор парового типа.

Если смотреть более глобально, то подобные установки представляют собой полноценные тепловые электростанции, пусть и меньших габаритов. Благодаря своей работе, они способны обеспечивать электричеством не только гражданские объекты, но и крупные промышленные отрасли.

Сам же принцип действия паровых электрических генераторов сводится к следующий основным моментам:

  • Специальное оборудование производит нагрев воды до оптимальных значений, при которых она испаряется, образуя пар.
  • Получившийся пар поступает дальше, на роторные лопатки паровой турбины, что приводит сам ротор в движение.
  • В результате мы получаем сначала кинетическую энергию, преобразованную из получившейся энергии сжатого пара. Затем кинетическая энергия переходит в механическую, что приводит к началу работы турбинного вала.
Читайте также:
Пластиковые кольца для колодца: виды, материалы, размеры и плюсы и минусы+ Фото

Электрический генератор, входящий в конструкцию таких паровых установок, является определяющим. Это объясняется тем, что именно электрогенераторы осуществляют переход механической энергии в электрическую.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Критерии выбора


На сегодняшний момент существует достаточно широкий выбор всевозможных электрических генераторов, работающих на пару, поэтому нужно крайне внимательно подходить к вопросу выбора.

Чтобы данный выбор был обдуманным и взвешенным, надо обращать внимание на следующие показатели:

  • Мощность паровой установки (тепловая и электрическая).
  • Нужно также обратить внимание на то, с какой скоростью происходит вращение роторов генератора и турбины.
  • Тип применяемого тока — здесь речь идет об однофазном или трехфазном виде установок. В большинстве случаев, используется именно трехфазная система.
  • Показатели давления пара не только в сжатом виде, но и в свободном состоянии.

Внимательное отношение к данным критериям позволит существенно упростить выбор, тем самым помогаю потребителю получить нужный ему агрегат. Чтобы было более наглядно, рассмотрим несколько моделей паровых электрогенераторов, пользующихся наибольшим спросом.

Пару слов о китайских электро турбинах

Буквально 2 года назад, «автоинтернет» просто взорвался от электрических турбин из Китая. Предлагалась небольшая «штуковина», которая устанавливалась в разрыв шланга воздухозабора, которая якобы нагнетала воздух с давлением в двигатель, обещанное увеличение мощности аж до – 15%! Сам двигатель представлял из себя непонятный кулер, ни потребление электричества, ни обороты, ни прокачиваемый воздух – показателей не было. Если разобрать его даже визуально, то становится понятно — что это кулер на подобии продвинутых компьютерных, ну что он может увеличить? НИЧЕГО! Так что просто не покупаем – это РАЗВОД.

Сейчас конечно на тех же китайских сайтах начинают появляться другие электро турбины, многие сделаны даже в форме улитки – аля механический компрессор. Но опять же нет ни показателей давления, ни потребления, ни перекачки воздуха. Думайте, прежде чем покупать. Смотрим познавательный ролик.

Обзор моделей


В нашей стране есть несколько предприятий, занимающихся производством паровых электрогенераторов. В частности, речь идет о турбогенераторах и ОАО «Росэлектромаш». Рассмотрим несколько моделей, произведенных на обоих предприятиях.

ПТ-40/50-8,8/1,3 представляет собой паровую турбину, используемую в различных схемах с утилизацией тепловой энергии, а также отходов производственного типа. Среди потенциальных покупателей данной продукции числятся крупные промышленные предприятия и электростанции.

  • показатели номинальной мощности — от 12000 кВт до 80000 кВт;
  • показатель давления пара — от 3 до 12,8 МПа;
  • температурные показатели пара — от 420 до 550 C;
  • производственное давление — от 0,5 до 1,75 МПа;
  • отопительное давление — от 0,07 до 0,25 МПа.

П-6-3,4/1,0 — это турбина парового типа, обладающая производственным отбором пара.

  • показатели номинальной мощности — от 4000 кВт до 55000 кВт;
  • показатель давления пара — от 1,1 до 8,8 МПа;
  • температурные показатели пара — от 260 до 445 C;
  • производственное давление — от 0,4 до 1,3 МПа.

ПР-13/15,8-3,4/1,5/0,6 используется во многих ТЭС, а также на предприятиях промышленного типа, где присутствует необходимость в подаче пара заданного показателя.

Целесообразность эксплуатации

Говорить о целесообразности покупки парового электрогенератора для личных нужд не приходится, потому что его стоимость очень высока для обычного бытового использования. Иными словами, подобные вложения вряд ли окупятся в течение жизни потенциального покупателя. Кроме того, габаритные размеры подобных установок, что размещать их необходимо на очень большой территории. Именно поэтому, на бытовом уровне используются агрегаты, у которых двигатель работает на бензине или дизеле, а для крупных предприятий как раз и подходит двигатель, работающий на пару.

Что касается использования электрогенераторов, работающих на пару, то их
использование в котельных установках может принести определенные плоды. Дело в том, что по достижении некоторых показателей мощности, данные установки показывают очень хорошие рабочие характеристики, выгодные отличающие их от своих аналогов.
Подробный рассказ про паровой генератор

Изготовление своими руками — возможно ли это?

Паровые электрогенераторы обладают очень сложной структурой, поэтому изготовление своими руками подобных агрегатов достаточно проблематично.
Тем не менее, при наличии некоторых знаний и необходимых материалов, сделать данный агрегат своими руками становится возможным.

Понятно, что итоговый вариант будет куда меньшего размера, чем заводские варианты. Кроме того, здесь будет совсем другое устройство для привода в движение имеющегося генератора — если в заводских моделях за это отвечает паровая турбина, то в домашнем варианте это будет делать двигатель.

На видео продемонстрирован походный паровой мини-генератор

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Читайте также:
Почему лучшая фанера для опалубки должна быть ламинированной и влагостойкой?

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Паровые турбины: как горячий пар превращается в электричество

Учёные до сих пор бьются над поиском самых эффективных способов по выработке тока — прогресс устремился от гальванических элементов к первым динамо-машинам, паровым, атомным, а теперь солнечным, ветряным и водородным электростанциям. В наше время самым массовым и удобным способом получения электричества остаётся генератор, приводимый в действие паровой турбиной.

Паровые турбины были изобретены задолго до того, как человек понял природу электричества. В этом посте мы упрощённо расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему Toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.

Как устроена паровая турбина

Принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. Чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.

Сама по себе паровая турбина не работает, для функционирования ей нужен пар. Поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. В этих тонких трубах вода превращается в пар.


Понятная схема работы ТЭЦ, вырабатывающей и электричество, и тепло для отопления домов. Источник: Мосэнерго

Турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. За каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).

Пару из одного вращающегося диска с лопатками и статора называют ступенью. В одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.

На вход в турбину подаётся пар с очень высокой температурой и под большим давлением. По давлению пара различают турбины низкого (до 1,2 МПа), среднего (до 5 МПа), высокого (до 15 МПа), сверхвысокого (15—22,5 МПа) и сверхкритического (свыше 22,5 МПа) давления. Для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 МПа, в автомобильной шине легковушки — 0,2 МПа.

Чем выше давление, тем выше температура кипения воды, а значит, температура пара. На вход турбины подается пар, перегретый до 550-560 °C! Зачем так много? По мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. Почему бы не перегреть пар выше? До недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.

Паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. Сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. Дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.

Но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает КПД турбины. Для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. Этот процесс называется промежуточным перегревом (промперегрев).

Цилиндров среднего и низкого давления в одной турбине может быть несколько. Пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.

Вращающийся вал турбины соединён с электрогенератором. Чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в России ток в сети имеет частоту 50 Гц, а турбины работают на 1500 или 3000 об/мин.

Упрощённо говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. Регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и управляют потоком пара, чтобы турбина сохраняла постоянные обороты. Если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу ТЭС и разлетаются на расстояние в несколько километров.

Как появились паровые турбины

Примерно в XVIII веке до нашей эры человечество уже укротило энергию стихии, превратив её в механическую энергию для совершения полезной работы — то были вавилонские ветряные мельницы. К II веку до н. э. в Римской империи появились водяные мельницы, чьи колёса приводились в движение нескончаемым потоком воды рек и ручьёв. И уже в I веке н. э. человек укротил потенциальную энергию водяного пара, с его помощью приведя в движение рукотворную систему.

Читайте также:
Полипропиленовый коллектор с кранами: видео-инструкция по монтажу своими руками, особенности сантехнических, водопроводных, шаровых изделий, цена, фото цена, фото


Эолипил Герона Александрийского — первая и единственная на следующие 15 веков реактивная паровая турбина. Источник: American Mechanical Dictionary / Wikimedia

Греческий математик и механик Герон Александрийский описал причудливый механизм эолипил, представляющий собой закреплённый на оси шар с исходящими из него под углом трубками. Подававшийся в шар из кипящего котла водяной пар с силой выходил из трубок, заставляя шар вращаться. Придуманная Героном машина в те времена казалась бесполезной игрушкой, но на самом деле античный учёный сконструировал первую паровую реактивную турбину, оценить потенциал которой удалось только через пятнадцать веков. Современная реплика эолипила развивает скорость до 1500 оборотов в минуту.

В XVI веке забытое изобретение Герона частично повторил сирийский астроном Такиюддин аш-Шами, только вместо шара в движение приводилось колесо, на которое пар дул прямо из котла. В 1629 году схожую идею предложил итальянский архитектор Джованни Бранка: струя пара вращала лопастное колесо, которое можно было приспособить для механизации лесопилки.


Активная паровая турбина Бранка совершала хоть какую-то полезную работу — «автоматизировала» две ступки.

Несмотря на описание несколькими изобретателями машин, преобразующих энергию пара в работу, до полезной реализации было еще далеко — технологии того времени не позволяли создать паровую турбину с практически применимой мощностью.

Турбинная революция

Шведский изобретатель Густаф Лаваль много лет вынашивал идею создания некоего двигателя, который смог бы вращать ось с огромной скоростью — это требовалось для функционирования сепаратора молока Лаваля. Пока сепаратор работал от «ручного привода»: система с зубчатой передачей превращала 40 оборотов в минуту на рукоятке в 7000 оборотов в сепараторе. В 1883 году Лавалю удалось адаптировать эолипил Герона, снабдив-таки молочный сепаратор двигателем. Идея была хорошая, но вибрации, жуткая дороговизна и неэкономичность паровой турбины заставили изобретателя вернуться к расчетам.

Турбинное колесо Лаваля появилось в 1889 году, но его конструкция дошла до наших дней почти в неизменном виде.

Спустя годы мучительных испытаний Лаваль смог создать активную паровую турбину с одним диском. На диск с лопатками из четырех труб с соплами под давлением подавался пар. Расширяясь и ускоряясь в соплах, пар ударял в лопатки диска и тем самым приводил диск в движение. Впоследствии изобретатель выпустил первые коммерчески доступные турбины с мощностью 3,6 кВт, соединял турбины с динамо-машинами для выработки электричества, а также запатентовал множество новшеств в конструкции турбин, включая такую их неотъемлемую в наше время часть, как конденсатор пара. Несмотря на тяжёлый старт, позже дела у Густафа Лаваля пошли хорошо: оставив свою прошлую компанию по производству сепараторов, он основал акционерное общество и приступил к наращиванию мощности агрегатов.

Параллельно с Лавалем свои исследования в области паровых турбин вёл англичанин cэр Чарлз Парсонс, который смог переосмыслить и удачно дополнить идеи Лаваля. Если первый использовал в своей турбине один диск с лопатками, то Парсонс запатентовал многоступенчатую турбину с несколькими последовательно расположенными дисками, а чуть позже добавил в конструкцию статоры для выравнивания потока.

Турбина Парсонса имела три последовательных цилиндра для пара высокого, среднего и низкого давления с разной геометрией лопаток. Если Лаваль опирался на активные турбины, то Парсонс создал реактивные группы.

В 1889 году Парсонс продал несколько сотен своих турбин для электрификации городов, а еще пять лет спустя было построено опытное судно «Турбиния», развивавшее недостижимую для паровых машин прежде скорость 63 км/ч. К началу XX века паровые турбины стали одним из главных двигателей стремительной электрификации планеты.


Сейчас «Турбиния» выставляется в музее в Ньюкасле. Обратите внимание на количество винтов. Источник: TWAMWIR / Wikimedia

Турбины Toshiba — путь длиной в век

Стремительное развитие электрифицированных железных дорог и текстильной промышленности в Японии заставило государство ответить на возросшее электропотребление строительством новых электростанций. Вместе с тем начались работы по проектированию и производству японских паровых турбин, первые из которых были поставлены на нужды страны уже в 1920-х годах. К делу подключилась и Toshiba (в те годы: Tokyo Denki и Shibaura Seisaku-sho).

Первая турбина Toshiba была выпущена в 1927 году, она имела скромную мощность в 23 кВт. Уже через два года все производимые в Японии паровые турбины выходили из фабрик Toshiba, были запущены агрегаты с общей мощностью 7500 кВт. Кстати, и для первой японской геотермальной станции, открытой в 1966 году, паровые турбины также поставляла Toshiba. К 1997 году все турбины Toshiba имели суммарную мощность 100000 МВт, а к 2017 поставки настолько возросли, что эквивалентная мощность составила 200000 МВт.

Такой спрос обусловлен точностью изготовления. Ротор с массой до 150 тонн вращается со скоростью 3600 оборотов в минуту, любой дисбаланс приведёт к вибрациям и аварии. Ротор балансируется с точностью до 1 грамма, а геометрические отклонения не должны превышать 0,01 мм от целевых значений. Оборудование с ЧПУ помогает снизить отклонения при производстве турбины до 0,005 мм — именно такая разница с целевыми параметрами среди сотрудников Toshiba считается хорошим тоном, хотя допустимая безопасная погрешность на порядок больше. Также каждая турбина обязательно проходит стресс-тест при повышенных оборотах — для агрегатов на 3600 оборотов тест предусматривает разгон до 4320 оборотов.


Удачное фото для понимания размеров ступеней низкого давления паровой турбины. Перед вами коллектив лучших мастеров завода Toshiba Keihin Product Operations. Источник: Toshiba

Эффективность паровых турбин

Паровые турбины хороши тем, что при увеличении их размеров значительно растёт вырабатываемая мощность и КПД. Экономически гораздо выгодней установить один или несколько агрегатов на крупную ТЭС, от которой по магистральным сетям распределять электричество на большие расстояния, чем строить местные ТЭС с малыми турбинами, мощностью от сотен киловатт до нескольких мегаватт. Дело в том, что при уменьшении габаритов и мощности в разы растёт стоимость турбины в пересчёте на киловатт, а КПД падает вдвое-втрое.

Читайте также:
Разведение перепелов в домашних условиях - подробная инструкция

Электрический КПД конденсационных турбин с промперегревом колеблется на уровне 35-40%. КПД современных ТЭС может достигать 45%.

Если сравнить эти показатели с результатами из таблицы, окажется, что паровая турбина — это один из лучших способов для покрытия больших потребностей в электричестве. Дизели — это «домашняя» история, ветряки — затратная и маломощная, ГЭС — очень затратная и привязанная к местности, а водородные топливные элементы, про которые мы уже писали — новый и, скорее, мобильный способ выработки электроэнергии.

Интересные факты

Самая мощная паровая турбина: такой титул могут по праву носить сразу два изделия — немецкая Siemens SST5-9000 и турбина производства ARABELLE, принадлежащей американской General Electric. Обе конденсационных турбины выдают до 1900 МВт мощности. Реализовать такой потенциал можно только на АЭС.


Рекордная турбина Siemens SST5-9000 с мощностью 1900 МВт. Рекорд, но спрос на такие мощности очень мал, поэтому Toshiba специализируется на агрегатах с вдвое меньшей мощностью. Источник: Siemens

Самая маленькая паровая турбина была создана в России всего пару лет назад инженерами Уральского федерального университета — ПТМ-30 всего полметра в диаметре, она имеет мощность 30 кВт. Малютку можно использовать для локальной выработки электроэнергии при помощи утилизации избыточного пара, остающегося от других процессов, чтобы извлекать из него экономическую выгоду, а не спускать в атмосферу.


Российская ПТМ-30 — самая маленькая в мире паровая турбина для выработки электричества. Источник: УрФУ

Самым неудачным применением паровой турбины стоит считать паротурбовозы — паровозы, в которых пар из котла поступает в турбину, а затем локомотив движется на электродвигателях или за счет механической передачи. Теоретически паровая турбина обеспечивала в разы больший КПД, чем обычный паровоз. На деле оказалось, что свои преимущества, как то высокая скорость и надежность, паротурбовоз проявляет только на скоростях выше 60 км/ч. При меньшей скорости движения турбина потребляет чересчур много пара и топлива. США и европейские страны экспериментировали с паровыми турбинами на локомотивах, но ужасная надежность и сомнительная эффективность сократили жизнь паротурбовозов как класса до 10-20 лет.


Угольный паротурбовоз C&O 500 ломался почти каждую поездку, из-за чего уже спустя год после выпуска был отправлен на металлолом. Источник: Wikimedia

Паровая турбина: устройство, принцип работы и рекомендации по изготовлению

Идея практического применения энергии пара далеко не нова, использование паровых турбин в промышленных масштабах давно стало частью нашей жизни. Именно эти агрегаты, установленные на различных электростанциях и ТЭЦ, на 99% снабжают электричеством наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип преобразования тепловой энергии в электрическую у себя дома. Для этого используется самодельная паровая турбина минимальных размеров и мощности. О том, как ее собрать в домашних условиях, и пойдет речь в данной статье.

Назначение


Подобного рода агрегаты имеет смысл использовать в тех отраслях современной промышленности или бытовой сферы, где наблюдается достаточное большое количество парообразований, которые можно использовать в качестве преобразователя в электроэнергию. Именно генераторы парового типа получили широкое использование в котельных установках, где они образуют некую тепловую электростанцию вместе котлом и турбиной.

Такие агрегаты позволяют существенно экономить на своей эксплуатации, а также снизить затраты на получение электрической энергии. Именно поэтому, паровые установки зачастую считаются одними из основных рабочих узлов многих электростанций.

Кроме того, если изучить принцип действия, а также конструктивные особенности подобных паровых генераторов, можно попытаться реализовать их своими руками, с помощью определенных средств. Однако, о данной возможности пойдет речь чуть позже.

Устройство и принцип действия


По своим конструктивным особенностям, котельные установки обладают достаточно схожей структурой. В их состав входит несколько рабочих узлов, которые принято считать определяющими — непосредственно сам котел, электрический генератор и турбина. Последние два составляющих образуют кинетическую связь между собой, а одной из разновидностей подобных систем является турбинный электрогенератор парового типа.

Если смотреть более глобально, то подобные установки представляют собой полноценные тепловые электростанции, пусть и меньших габаритов. Благодаря своей работе, они способны обеспечивать электричеством не только гражданские объекты, но и крупные промышленные отрасли.

Сам же принцип действия паровых электрических генераторов сводится к следующий основным моментам:

  • Специальное оборудование производит нагрев воды до оптимальных значений, при которых она испаряется, образуя пар.
  • Получившийся пар поступает дальше, на роторные лопатки паровой турбины, что приводит сам ротор в движение.
  • В результате мы получаем сначала кинетическую энергию, преобразованную из получившейся энергии сжатого пара. Затем кинетическая энергия переходит в механическую, что приводит к началу работы турбинного вала.

Электрический генератор, входящий в конструкцию таких паровых установок, является определяющим. Это объясняется тем, что именно электрогенераторы осуществляют переход механической энергии в электрическую.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Критерии выбора


На сегодняшний момент существует достаточно широкий выбор всевозможных электрических генераторов, работающих на пару, поэтому нужно крайне внимательно подходить к вопросу выбора.

Чтобы данный выбор был обдуманным и взвешенным, надо обращать внимание на следующие показатели:

  • Мощность паровой установки (тепловая и электрическая).
  • Нужно также обратить внимание на то, с какой скоростью происходит вращение роторов генератора и турбины.
  • Тип применяемого тока — здесь речь идет об однофазном или трехфазном виде установок. В большинстве случаев, используется именно трехфазная система.
  • Показатели давления пара не только в сжатом виде, но и в свободном состоянии.
Читайте также:
Основные инженерные изыскания для строительства

Внимательное отношение к данным критериям позволит существенно упростить выбор, тем самым помогаю потребителю получить нужный ему агрегат. Чтобы было более наглядно, рассмотрим несколько моделей паровых электрогенераторов, пользующихся наибольшим спросом.

Пару слов о китайских электро турбинах

Буквально 2 года назад, «автоинтернет» просто взорвался от электрических турбин из Китая. Предлагалась небольшая «штуковина», которая устанавливалась в разрыв шланга воздухозабора, которая якобы нагнетала воздух с давлением в двигатель, обещанное увеличение мощности аж до – 15%! Сам двигатель представлял из себя непонятный кулер, ни потребление электричества, ни обороты, ни прокачиваемый воздух – показателей не было. Если разобрать его даже визуально, то становится понятно — что это кулер на подобии продвинутых компьютерных, ну что он может увеличить? НИЧЕГО! Так что просто не покупаем – это РАЗВОД.

Сейчас конечно на тех же китайских сайтах начинают появляться другие электро турбины, многие сделаны даже в форме улитки – аля механический компрессор. Но опять же нет ни показателей давления, ни потребления, ни перекачки воздуха. Думайте, прежде чем покупать. Смотрим познавательный ролик.

Обзор моделей


В нашей стране есть несколько предприятий, занимающихся производством паровых электрогенераторов. В частности, речь идет о турбогенераторах и ОАО «Росэлектромаш». Рассмотрим несколько моделей, произведенных на обоих предприятиях.

ПТ-40/50-8,8/1,3 представляет собой паровую турбину, используемую в различных схемах с утилизацией тепловой энергии, а также отходов производственного типа. Среди потенциальных покупателей данной продукции числятся крупные промышленные предприятия и электростанции.

  • показатели номинальной мощности — от 12000 кВт до 80000 кВт;
  • показатель давления пара — от 3 до 12,8 МПа;
  • температурные показатели пара — от 420 до 550 C;
  • производственное давление — от 0,5 до 1,75 МПа;
  • отопительное давление — от 0,07 до 0,25 МПа.

П-6-3,4/1,0 — это турбина парового типа, обладающая производственным отбором пара.

  • показатели номинальной мощности — от 4000 кВт до 55000 кВт;
  • показатель давления пара — от 1,1 до 8,8 МПа;
  • температурные показатели пара — от 260 до 445 C;
  • производственное давление — от 0,4 до 1,3 МПа.

ПР-13/15,8-3,4/1,5/0,6 используется во многих ТЭС, а также на предприятиях промышленного типа, где присутствует необходимость в подаче пара заданного показателя.

Целесообразность эксплуатации

Говорить о целесообразности покупки парового электрогенератора для личных нужд не приходится, потому что его стоимость очень высока для обычного бытового использования. Иными словами, подобные вложения вряд ли окупятся в течение жизни потенциального покупателя. Кроме того, габаритные размеры подобных установок, что размещать их необходимо на очень большой территории. Именно поэтому, на бытовом уровне используются агрегаты, у которых двигатель работает на бензине или дизеле, а для крупных предприятий как раз и подходит двигатель, работающий на пару.

Что касается использования электрогенераторов, работающих на пару, то их
использование в котельных установках может принести определенные плоды. Дело в том, что по достижении некоторых показателей мощности, данные установки показывают очень хорошие рабочие характеристики, выгодные отличающие их от своих аналогов.
Подробный рассказ про паровой генератор

Изготовление своими руками — возможно ли это?

Паровые электрогенераторы обладают очень сложной структурой, поэтому изготовление своими руками подобных агрегатов достаточно проблематично.
Тем не менее, при наличии некоторых знаний и необходимых материалов, сделать данный агрегат своими руками становится возможным.

Понятно, что итоговый вариант будет куда меньшего размера, чем заводские варианты. Кроме того, здесь будет совсем другое устройство для привода в движение имеющегося генератора — если в заводских моделях за это отвечает паровая турбина, то в домашнем варианте это будет делать двигатель.

На видео продемонстрирован походный паровой мини-генератор

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: