Проверка автоматических выключателей по току короткого замыкания: методика

Теория и методика прогрузки автоматических выключателей

Заключительный этап электромонтажа требует, согласно нормативным техническим документам, проведения определенных испытаний и измерений, среди которых – испытание работоспособности коммутационных аппаратов защиты. Показания последних должны соответствовать номинальным данным.

Главное предназначение аппаратов защиты – не допустить возникновение в электрических цепях коротких замыканий. В связи с этим необходимо проводить электромонтаж строго по проекту.

Так что же представляют собой номинальные данные аппаратов защиты?

Основными характеристиками (данными) для автоматических выключателей являются следующие:

1. Номинальный ток, то есть допустимая величина тока при условии работы сети в нормальном режиме.

2. Ток срабатывания защиты. Это характеристика величины тока при коротком замыкании или перегрузке в электрической линии.

3. Время срабатывания защиты. В этом случае речь идёт об уставке по времени при перегрузке или коротком замыкании.

Прогрузка автоматических выключателей подразумевает под собой измерение ключевых характеристик автоматических выключателей.

Обязанность по проведению измерений основных данных автоматических выключателей ложится на плечи персонала электролаборатории. Устройство для прогрузки автоматов различных типов позволяет применять их для проверки вольтамперных характеристик автоматических выключателей. Так, в соответствии с руководством ПУЭ п. 3.1.8 защита электрических сетей от коротких замыканий (КЗ) обеспечивает требования селективности и минимальное время отключения. В требованиях ПУЭ п. 1.7.79 и п. 7.3.139 представлены значения отношений минимального расчетного тока КЗ к Iноминальному току плавкой вставки или расцепителя, которые обеспечивают надежное отключение поврежденной электрической сети.

В системе TN максимальное время автоматического защитного отключения не должно быть больше 2 и 4 десятых секунд соответственно для 380 и 220В (ПЭУ п. 1.7.79 табл. 1.7.1).

Для автоматического отключения сети в электроустановках до 1000 Вольт с глухозаземлённой нейтралью, проводимость защитных нулевых проводников выбирается с учетом максимального короткого замыкания и должна быть такой, чтобы при возникновении аварийной ситуации возникал ток превышающий в 4 раза Iноминального плавкой вставки и в 6 раз I расцепителя автоматического выключателя с обратнозависимой характеристикой (ПЭУ п. 7.3.139).

Автоматические выключатели с электромагнитным расцепителем (без временной выдержки), при защите сетей, используют кратность тока КЗ согласно требований ПЭУ п.1.7.79.

Для вновь смонтированных электроустановок или после их реконструкции используется методика прогрузки автоматов и испытаний на основании ПУЭ 1.8.37 п.п. 3.1, 3.2. Так, у выключателей с Iноминальным 400 Ампер и выше, проводится проверка сопротивления изоляции, которое должно быть не меньше 1Мом (ПУЭ 1.8.37 п. 3.1). Кроме того, проводится проверка действия расцепителя с мгновенным действием (электромагнитным расцепителем), и должно обеспечивать срабатывание выключателя при токе не более 1,1 номинального тока отключения, рекомендуемого заводом-изготовителем.

Если электроустановка смонтирована в соответствии с главами 7.1 и 7.2 раздела 6 ПУЭ, тогда проверяют все секционные и вводные выключатели, автоматы цепей автоматического пожаротушения и пожарной сигнализации, автоматы аварийного освещения, а так же не менее 2% выключателей групповых и распределительных сетей. В других электроустановках проверка аналогичная, но не 1% выключателей. В случае обнаружения автоматических выключателей с не соответствием характеристик требованиям завода изготовителя, проводится проверка всех автоматов.

Для электроустановок находящихся в эксплуатации, периодичность прогрузки автоматов осуществляется каждые три года. Проверка действий расцепителей автоматов проводится согласно ПТЭЭП.

Как производится прогрузка автоматических выключателей?

Устройство прогрузки (проверки) автоматических выключателей

Для того, чтобы проверить первичным током автоматические выключатели, требуются специальные прогрузочные устройства. На сегодняшний день выбор таких устройств очень широк, легко найти подходящее для любого типа и номинального тока.

Это устройство с такой схемой:

Предложенная схема устройства для прогрузки автоматических выключателей состоит из:

лабораторного автотрансформатора (ЛАТР)

ключа управления (КУ)

нагрузочного трансформатора (НТ)

амперметра с различными пределами измерения (шунт)

трансформатора тока (ТТ)

соединительных проводов, которые соединяют испытуемый аппарат с выводами «регулируемый ток»

Обратите внимание: на схеме не обозначен секундомер, который тоже являются важной частью устройства.

Подобное устройство даёт возможность во вторичной обмотке нагрузочного трансформатора наводить требуемый ток.

Методика прогрузки (проверки) автоматических выключателей

Какова методика прогрузки автоматического выключателя? Рассмотрим её на примере автомата российского производства IEK ВА47-29 с номинальным током 6 (А) и защитной характеристикой «С».

Предложенный автоматический выключатель обладает двумя защитами:

тепловой (с выдержкой времени)

Необходимо проверить обе защиты: и тепловую, и электромагнитную. защиту. Для того, чтобы сделать это, нужно заглянуть в паспорт автоматического выключателя и найти там график времятоковых характеристик срабатывания.

Выглядит график следующим образом:

В этом графике отражен полный спектр характеристик срабатывания испытуемого нами аппарата. Ось Х демонстрирует кратность тока, другими словами, отношение к номинальному току тока прогрузки. Ось У отражает выдержку времени срабатывания автомата.

Читайте также:
Остекление лоджий: выбор рациональной конфигурации

Для данного автоматического выключателя зона срабатывания электромагнитной защиты находится в диапазоне 5-10 кратности по отношению к номинальному току. Иначе говоря, в этом конкретном случае электромагнитная защита будет срабатывать за время не больше 0,01-0,02 секунды при токе в 30-60 (А).

Проверим электромагнитную защиту восьмикратным током 48 (А). При таких показателях тока автомат должен успеть отключиться за время, не превышающее 0,01 секунды: обратите внимание на желтую линию, изображенную на графике.

Зона срабатывания тепловой защиты ограничивается двумя кривыми. Эти кривые демонстрируют различное температурное состояние аппарата – горячее или холодное.

Для проверки тепловой защиты используем 3-кратный ток 18 (А). При заданных условиях, если всё в норме, автомат должен будет отключиться в интервал времени от 3 до 80 секунд, что показано на нашем графике красной линией.

Автоматический выключатель неисправен, при условии, что хотя бы одна из двух вышеназванных защит при проверке не отключит его в отведенные временные рамки. В таком случае автоматический выключатель нельзя допускать к дальнейшей эксплуатации.

Протокол прогрузки (проверки) автоматических выключателей

Все данные по выдержке времени и наводимому току, которые были получены по итогам проведения проверки автоматического выключателя первичным током, то есть проверки срабатывания электромагнитной и тепловой защиты, необходимо тщательно занести в протокол. Стандартная форма протокола выглядит следующим образом:

Периодичность прогрузки автоматических выключателей

Итак, нами была подробно рассмотрена прогрузка автоматических выключателей, однако мы ничего не сказали о том, как часто необходимо проводить такую проверку. Что касается периодичности проведения прогрузок автоматических выключателей, то её определяют нормы заводов-изготовителей.

Проверка автоматических выключателей

Автоматические выключатели служат для защиты электрических цепей напряжением до 1000 В от аварийных режимов работы. Надежная защита электрических цепей данными электрическими аппаратами обеспечивается только в том случае, если автоматический выключатель находится в исправном техническом состоянии, а его фактические рабочие характеристики соответствуют заявленным. Поэтому проверка автоматических выключателей является одним из обязательных этапов работ при вводе в работу электрических щитов различного назначения, а также при периодической их ревизии. Рассмотрим особенности проверки автоматических выключателей.

В первую очередь необходимо произвести визуальный осмотр аппарата. На корпусе автоматического выключателя должна быть нанесена необходимая маркировка, не должно быть видимых дефектов, неплотного прилегания частей корпуса. Необходимо произвести несколько операций включения и отключения аппарата вручную.

Автомат должен фиксироваться во включенном положении и свободно отключаться. Также необходимо обратить внимание на качество зажимов автоматического выключателя. При отсутствии видимых повреждений переходим к проверке его рабочих характеристик.

Автоматический выключатель конструктивно имеет независимый, тепловой и электромагнитный расцепители. Проверка автоматического выключателя заключается в проверке работоспособности перечисленных расцепителей при различных условиях. Данный процесс называется прогрузкой.

Прогрузка автоматических выключателей осуществляется на специальной испытательной установке, при помощи которой можно подать на испытуемый аппарат необходимый ток нагрузки и зафиксировать время его срабатывания.

Независимый расцепитель осуществляет замыкание и размыкание контактов автоматического выключателя при выполнении операций включения и отключения аппарата вручную. Также данный расцепитель автоматически отключает защитный аппарат в случае воздействия на него двух других расцепителей, осуществляющих защиту от сверхтоков.

Тепловой расцепитель осуществляет защиту от превышения тока нагрузки, протекающего через автоматический выключатель, выше номинального значения. Основной конструктивный элемент данного расцепителя – это биметаллическая пластина, которая нагревается и деформируется в случае протекания через нее тока нагрузки.

Пластина, отклоняясь до определенного положения, осуществляет воздействие на механизм свободного расцепления, который обеспечивает автоматическое отключение выключателя. Причем время срабатывания теплового расцепителя зависит от тока нагрузки.

Каждый тип и класс автоматического выключателя имеет свою времятоковую характеристику, в которой прослеживается зависимость тока нагрузки от времени срабатывания теплового расцепителя данного автоматического выключателя.

При проверке теплового расцепителя берется несколько значений тока, фиксируется время, за которое произойдет автоматическое отключение автоматического выключателя. Полученные значения сверяют со значениями из времятоковой характеристики для данного аппарата. Следует учитывать, что на время срабатывания теплового расцепителя влияет температура окружающей среды.

В паспортных данных к автоматическому выключателю приводятся времятоковые характеристики для температуры 25 0С, при повышении температуры время срабатывания теплового расцепителя снижается, а при снижении температуры – увеличивается.

Электромагнитный расцепитель служит для защиты электрической цепи от токов короткого замыкания, токов, которые значительно превышают номинальный. Величину тока, при котором срабатывает данный расцепитель, показывает класс автоматического выключателя. Класс показывает кратность тока срабатывания электромагнитного расцепителя к номинальному току автомата.

Читайте также:
Оригинальные и практичные аксессуары для кухни

Например, класс «C» показывает, что электромагнитный расцепитель сработает при превышении номинального тока в 5-10 раз. Если номинальный ток автоматического выключателя 25 А, то ток срабатывания его электромагнитного расцепителя будет в пределах 125-250 А. Данный расцепитель, в отличие от теплового, должен сработать мгновенно, за доли секунды.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

ЭЛЕКТРОлаборатория

Доброе время суток, дорогие друзья!

Сегодня расскажу как надо испытывать автоматические выключатели.

Испытания автоматических выключателей проводятся:

• перед приемкой электроустановки в эксплуатацию

• в процессе эксплуатации в сроки, устанавливаемые системой ППР;

• «к» — после капитальных ремонтов электрооборудования;

• «т» — после текущих ремонтов электрооборудования;

• «м» — межремонтные профилактические испытания.

Нормируемые величины.

Параметры срабатывания автоматических выключателей должны соответствовать данным завода-изготовителя и обеспечивать:

• защиту от поражения электрическим током (в случае недостаточности других защитных мер) при коротких замыканиях;

• защиту сетей от перегрузок и пожаров, вызванных технологическими перегрузками или повреждениями изоляции.

Обеспечение требований защиты от поражения электрическим током при косвенных прикосновениях путем автоматического отключения питания достигается нормированным временем отключения поврежденного участка цепи, зависящего от тока однофазного замыкания.

Время срабатывания автоматического выключателя проверяется в случае, когда измеренный или расчетный ток однофазного замыкания меньше верхнего предела диапазона токов мгновенного расцепления этого выключателя и разброс времени срабатывания выключателя по времятоковой характеристике выходит за пределы нормированного времени отключения, приведенные в таблице 2.

При этом расцепители автоматических выключателей испытываются током, равным измеренному или расчетному значению тока однофазного замыкания.

При проверке защиты сетей от перегрузок для автоматических выключателей допустимое время срабатывания в зависимости от кратности номинального тока и температуры окружающей среды определяется по паспортным данным.

При проверке времени срабатывания автоматического выключателя кратность тока испытания должна приниматься такой, чтобы время срабатывания было не менее 5 секунд.

При этом необходимая кратность испытательного тока ориентировочно определяется по формуле:

I7t7 — семикратный ток испытаний и время срабатывания теплового расцепителя при этом токе;

tx — заданное время срабатывания;

IХ — ток, при котором время срабатывания будет соответствовать заданно

Расцепители регулируют и калибруют на заводе-изготовителе, после чего их крышки пломбируют. Открывать крышки и регулировать расцепители не допускается.

При наружном осмотре проверяют отсутствие повреждении основания кожуха и крышки автомата, производят несколько включений и отключений вручную, проверяя действие расцепителей.

На заводе-изготовителе тепловые расцепители ( расцепители с обратнозависимой выдержкой времени) калибруют по начальному току срабатывания. Проверка этого тока требует больших затрат времени.

Поэтому при приемосдаточных и эксплуатационных испытаниях проверку согласно ГОСТ 50345-2010 производят в форсированном режиме: при 2-х или 3-х кратном номинальном токе расцепителя.

Для каждого типа выключателя и расцепителя время срабатывания при 2-3-кратной нагрузке не должно превышать указанного заводом. Заводские данные даются для случая одновременной нагрузки испытательным током всех полюсов выключателя, соединенных последовательно.

Однако при одновременной нагрузке всех полюсов проверка не дает гарантии исправности каждого расцепителя. Поэтому, кроме проверки при одновременной нагрузке всех полюсов выключателя, целесообразно проверить каждый тепловой расцепитель в отдельности.

При испытании тепловых расцепителей необходимо помнить, что если тепловой элемент не сработает и не произойдет отключения автомата за максимально допустимое для него время, то необходимо отключить испытательный ток во избежание перегрева и порчи расцепителя.

Максимально допустимое время равно примерно двойному времени срабатывания при форсированном режиме испытания.

Электромагнитные расцепители проверяются только при поочередной нагрузке испытательным током каждой фазы автомата .

При этом нагрузочный ток повышают до 0,8 значения тока отсечки, указанного в паспортных данных выключателя, или до нижнего предела тока мгновенного расцепления для выключателей типов В, С, D и аналогичных (классификация согласно ГОСТ 50345-2010).

Электромагнитный расцепитель не должен сработать.

После этого нагрузочный ток увеличивается до 1,2 тока отсечки или до верхнего предела тока мгновенного расцепления для выключателей типов В, С, D. Электромагнитный расцепитель должен сработать. Это означает, что ток отсечки находится в допустимых пределах.

При проверке комбинированных расцепителей (с тепловыми и электромагнитными элементами) нагрузочный ток необходимо повышать быстро, чтобы не успел сработать тепловой расцепитель.

Чтобы убедиться в том, что тепловой расцепитель не сработал, сразу после отключения выключатель включают вручную, при срабатывании теплового расцепителя повторное его включение не произойдет.

Читайте также:
Процесс посадки петунии на рассаду с использованием торфяных таблеток. 50 фото петуний

Принципиальная схема проверки тепловых и электромагнитных расцепителей автоматического выключателя предусматривает:

• проверка каждого полюса в отдельности ;

• проверка при одновременной нагрузке всех полюсов .

Проверка тепловых и электромагнитных расцепителей выключателей бытового и аналогичного назначения.

Собрать схему проверки в соответствии с инструкцией изготовителя используемого нагрузочного устройства.

Для проверки тепловых расцепителей пропустить через каждый, находящийся в холодном состоянии, полюс выключателя ток, равный 2,55 In.

Время расцепления должно составлять не менее 1 с и не более:

• 60 с — при номинальных токах выключателей до 32 А;

• 120с —при номинальных токах выключателей выше 32 А.

Для проверки электромагнитных расцепителей типа «В»:

Пропустить через каждый полюс ток, равный 3 In.

• Время расцепления должно быть не менее 0,1 с.

Пропустить через каждый полюс ток, равный 5 In.

• Время расцепления должно быть менее 0,1 с.

Для проверки электромагнитных расцепителей типа «С»

Пропустить через каждый полюс ток, равный 5 In.

• Время расцепления должно быть не менее 0,1 с.

Пропустить через каждый полюс ток, равный 10 In.

• Время расцепления должно быть менее 0,1 с.

Для проверки электромагнитных расцепителей типа «D»

Пропустить через каждый полюс ток, равный 10 In.

• Время расцепления должно быть не менее 0,1 с.

Пропустить через каждый полюс ток, равный 50 In.

• Время расцепления должно быть менее 0,1 с.

Также, как и при проверке тепловых расцепителей, полюса выключателей перед каждым испытанием должны находиться в холодном состоянии.

Термин «холодное» означает: «Без предварительного пропускания тока при контрольной температуре калибровки» (ГОСТ Р 50345-2010).

Контрольная температура калибровки — 30°С.

Испытания проводят при любой температуре, а результаты корректируют к температуре 30°С на основании поправочных коэффициентов изготовителя.

При отсутствии данных изготовителя испытательные токи устанавливают отличными от указанных на 1,2% на каждый градус изменения температуры, при которой проводятся испытания.

Пример: при проведении испытаний при температуре 20°С испытательные токи следует увеличивать на 12%.

Проверка расцепителей выключателей, не относящихся к категории «бытового и аналогичного назначения» (по ГОСТ Р 50030.2-2010)

Проверка расцепителей перегрузки

Расцепители перегрузки рассматриваемых выключателей подразделяются на:

· расцепители мгновенного действия;

· расцепители с независимой выдержкой времени;

· расцепители с обратнозависимой выдержкой времени (тепловые).

При проверке расцепителей мгновенного действия или с независимой выдержкой времени через каждый полюс выключателя пропустить испытательный ток, равный 90 % уставки по току перегрузки.

При этом расцепитель не должен сработать с начала прохождения тока в течение:

· 0,2 с для расцепителей мгновенного действия;

· удвоенной выдержке времени, указанной изготовителем, для расцепителей с независимой выдержкой времени.

Пропустить через каждый полюс ток, равный 110 % уставки по току нагрузки.

При этом расцепитель должен сработать в течение:

· 0,2 с для расцепителей с независимой выдержкой времени;

· удвоенной выдержке времени, указанной изготовителем, для расцепителей мгновенного действия.

При проверке расцепителей с обратнозависимой выдержкой времени (тепловых) при контрольной температуре (30 ± 2) °С (холодное состояние полюсов) через последовательно соединенные полюса выключателя пропускают ток, равный 1,05 уставки расцепителя в течение 1 часа. В течение этого времени расцепитель сработать не должен.

По истечении этого времени значение испытательного тока в течение 5 с повышают до 1,3 уставки расцепителя. При протекании этого тока расцепитель должен сработать в течение 2 часов с момента увеличения испытательного тока. Данные испытания требуют больших затрат времени, поэтому проверку соответствия параметров расцепителей с обратнозависимой выдержкой времени данным изготовителя при массовых испытаниях производят в форсированном режиме при условии, что время расцепления должно быть не менее 5 с.

При этом кратность тока, обеспечивающая данное условие, определяется по паспортным данным выключателя по формуле (1) настоящей методики. При проведении испытаний при температуре, отличной от контрольной, результаты необходимо корректировать к температуре 30 °С по указаниям изготовителя.

Проверка расцепителей короткого замыкания

Расцепители токов короткого замыкания рассматриваемых выключателей подразделяются на:

· расцепители мгновенного действия;

· расцепители с независимой выдержкой времени.

При проверке параметров указанных расцепителей через каждый полюс необходимо пропустить испытательный ток, равный 80 % уставки расцепителя.

Расцепитель не должен сработать с начала прохождения тока в течение:

· 0,2 с для расцепителей мгновенного действия;

· удвоенной выдержке времени, указанной изготовителем, для расцепителей с независимой выдержкой времени.

Пропустить испытательный ток, равный 120 % уставки расцепителя.

Расцепитель должен сработать в течение:

· 0,2 с для расцепителей мгновенного действия;

· удвоенной выдержке времени, указанной изготовителем, для расцепителей с независимой выдержкой времени.

Читайте также:
Рецепт Кабачки кубиками в томатном соусе

14 мыслей о “Проверка автоматических выключателей.”

Откуда взята первая таблица, нормирующая время срабатывания расцепителя?

Из ПУЭ Правила устройства электроустановок

Каким приборов Вы проводите испытания автоматов?

Прибором Сатурн-М1 или собираю схему из амперметра, вольтметра, ЛАТРа, прогрузочного трансформатора, УТТ, таймера. Но второе скорее для релейной защиты.

Каким нормативным документом нормируется периодичность проверки автоматического выключателя на кратность КЗ ?
В ПТЭЭП нету, в ПУЭ нету. Где есть?

Владимир, добрый вечер.
Ответом на Ваш вопрос будет моя новая статья от сегодня или завтра. Это будет зависеть от вашего часового пояса.

Добрый день!
Ищу компанию по Северо-Западу по поверке прибора УПТР-2МЦ. Но все как-то отнекиваются, ссылаясь на большие токи (14кА).
Скажите а могу ли я получить документ на это устройство, но с указанной поверкой на заниженные хар-ки?

Добрый день.
Думаю можете, но тогда в свидетельстве о поверке будет указан уже заниженный диапазон токов. И Вы не сможете этим прибором прогружать автоматы например с током отсечки 14 000 А.
У меня была такая проблема с микроомметром Ф4104. Не могли они его поверить в диапазоне до 100 мкОм.
Неужели у Вас в местном ЦСМ не могут поверить данный прибор.
Рекомендую обратиться на завод производитель. Может там Вам подскажут организации которые смогут поверить указанный вами прибор. Или вышлют методику поверки. Возможно никто не берется потому что не знают как его поверить.
Желаю удачи.

Доброго времени суток.
При прогрузке одного полюса, на трех полюсном автомате, у теплового расцепителя не достаточно механического давления на общий расцепитель. И как результат от перегрева он выходит из строя.
А в схеме одновременной прогрузки всех полюсов автомата испытательным током все проходит на отлично.
Завод изготовитель также указывает на необходимость одновременной прогрузки!
Как в таком случае увязать с ГОСТ, ПЭУ, .
(Исп. автомат АЕ 2046-10Б-00 У3 25А, Прибор Сатурн М3)
Спасибо.

Доброе утро Максим.
Следует конечно учитывать требования производителей.
Но нагрузка может быть и на трехполюсном автомате однофазная. Поэтому автомат должен срабатывать при возникновении тока перегруза на каждом из полюсов. А при одновременной подаче испытательного тока на все три полюса нельзя однозначно понять что защита каждого полюса исправна.
Вот такой мой ответ.
Желаю удачи.

Т.е. в данном случае я могу сказать ,что автомат неисправен? Понимая, что для однофазных сетей существуют однополюсные автоматы! Просто, я так хочу! И выбрать другого производителя?

Можете если вы испытываете автоматы в соответствии с ГОСТ а результаты не соответствуют номинальным параметрам.
Кстати ГОСТ р 50030.2-2010 при проверке тепловых расцепителей рекомендует полюсы соединить последовательно. Но этот ГОСТ не распространяется на автоматы из категории бытового и аналогичного назначения.
Возможно ваши автоматы соответствуют этому ГОСТу

Кстати согласно ПУЭ п.1.8.37 проверка действия автоматических выключателей производится в соответствии с указаниями завода изготовителя.
Прошу прощения за то что возможно ввел Вас в заблуждение Максим.
Редко в работе касаюсь данной темы.

Как проверить автомат на короткое замыкание?

Автоматический выключатель

Автоматические выключатели служат для проведения, включения и автоматического размыкания электрических цепей при аномальных явлениях (например при токах перегрузки, КЗ, недопустимых снижения напряжения), а также для нечастого включения цепей вручную.

Защиту от токов коротких замыканий выполняет электромагнитный расцепитель. Срабатывание электромагнитного расцепителя обеспечивает электромагнит, якорь которого при срабатывании давит на расцепитель, обеспечивая отключение автомата. Электромагнитный расцепитель имеет свой ток отключения при КЗ (уставка КЗ). Этот ток выражается в амперах, или чаще, — в кратности к номинальному току.

Время срабатывания электромагнитного расцепителя при токе КЗ мгновенное (собственное время срабатывание расцепителя сотые доли секунд).

Электродинамический расцепитель используется для защиты от коротких замыканий в автоматах с большими номинальными токами. Срабатывание обеспечивается электродинамическими силами, размыкающие силовые контакты.

Защиту от токов перегрузок выполняет тепловой расцепитель. Основа теплового расцепителя -биметаллическая (в последнее время триметаллическая) пластина, которая при нагреве изменяет свою форму, и этим обеспечивает срабатывание расцепителя. Тепловой расцепитель не имеет постоянного времени отключения автомата, его время срабатывания зависит от величины тока перегрузки.

Полупроводниковый расцепитель осуществляет защиту от токов коротких замыканий и перегрузок в цепи. В отличие от электромагнитного и теплового расцепителей полупроводниковый расцепитель допускает ступенчатый выбор параметров:

  • номинального тока расцепителя;
  • уставки по току срабатывания в зоне токов короткого замыкания;
  • уставки по времени срабатывания в зоне токов перегрузки;
  • уставки по времени срабатывания в зоне токов короткого замыкания;
  • уставки по току срабатываний при однофазном коротком замыкании.
Читайте также:
Окна со встроенными жалюзи

Для расцепителя в зоне токов перегрузки сигнал на срабатывание выдается с обратно зависимой от тока выдержкой времени (чем больше ток, тем меньше выдержка времени на отключение). Для расцепителя в зоне токов короткого замыкания, при значениях тока меньше предельного тока селективности, сигнал на срабатывание выдается с выдержкой времени.

При значениях тока больше предельных токов селективности сигнал на отключение подаётся мгновенно. Также сигнал на отключение подается мгновенно, при не установленной выдержке времени.

Автоматы на основе таких расцепителей получают сигнал от измерительного устройства и формируют соответствующую защитную характеристику, выдающую сигнал через промежуточное реле на независимый расцепитель.

Отключающая способность

Её синонимы: номинальная наибольшая отключающая способность Icn, номинальная рабочая наибольшая отключающая способность Ics, номинальная предельная наибольшая отключающая способность Icu. Является основным параметром для выбора и замены автоматического выключателя.

Для бытового применения (ГОСТ Р 50345-99 (МЭК 60898)) автомат должен обладать номинальной наибольшей отключающей способностью Icn перекрывающую максимальный ток КЗ в данной цепи.

Для промышленного применения, имеющего доступ обученного персонала (ГОСТ Р 50030.2-99 (МЭК 60947.2), ГОСТ 9098-78, автомат должен обладать номинальной предельной наибольшей отключающей способностью Icu. перекрывающую максимальный ток КЗ в данной цепи. Автоматический выключатель работавший при токе равном Icu в соответствии с установленным циклом не обязан длительно проводить ток.

Категория применения

По ГОСТ Р 50030.2-99 (МЭК60947.2) выключатели с категорией А не предназначены, а с категорией В предназначены для обеспечения селективности при КЗ. Выключатели категории В имеют номинальный кратковременно выдерживаемый ток Icw, и время прохождения этого тока (обычно 0.25, 0.5 или 1с).

Если категория не оговаривается, имеется в виду категория А.

Токоограничение

Выключатель с токоограничением не позволяет току КЗ принять его максимальное значение и быстрее производит отключение. Класс токоограничения -2 ограничивает по времени КЗ в пределах ½ полу периода, класс -3 ограничивает КЗ в пределах 1/3 полу периода. Если автомат с токоограничением, но не указан класс, предоставляется интегральная характеристика I²t.

Выключатели изготавливаются со следующими дополнительными сборочными единицами (только те марки, для которых это предусмотрено):

  • свободными контактами (СК), (определяют положение автомата (вкл / выкл.);
  • вспомогательными контактами сигнализации автоматического отключения (ВСК), (сигнализируют срабатывание защиты автомата);
  • электромагнитным приводом (ЭП);
  • независимым расцепителем (НР), (обеспечивает отключение выключателя при подаче на катушку независимого расцепителя напряжения);
  • нулевым расцепителем (РНН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.1-0.35 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.1 номинального и ниже);
  • минимальным расцепителем (РМН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.35-0.7 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.35 номинального и ниже).
  • дополнительным кожухом (для увеличения степени защиты автомата от окружающей среды);
  • блокировкой положения «включено» и «отключено» замком.

По способу присоединения автоматы делятся на стационарные и выдвижные. Стационарные автоматы по способу монтажа могут быть как переднего присоединения, так и заднего. Переднее присоединение бывает как с креплением на din-рейке, так и с креплением винтами или болтами.

Буквенные характеристики расцепителей модульных выключателей

В — применяется для осветительных сетей. С — применяется для осветительных сетей с удаленным потребителем.

D — обеспечивают защиту установок с высокими значениями пусковых токов (двигатели, иногда лампы с пуско-ругулируещем устройством, трансформаторы).

Испытание расцепителей автоматических выключателей

Собирается схема проверок срабатывания расцепителей автоматических выключателей (АВ) согласно руководству по эксплуатации испытательного оборудования (нагрузочного устройства). Устанавливается испытательный ток соответствующий уставке тока данного типа расцепителей АВ.

Установившееся превышение температуры для контактов автомата при нагрузке всех полюсов номинальным током расцепителя и температуре окружающей среды 25 градусов С не должно превышать 80 градусов С. Электромагнитный расцепитель срабатывает без выдержки времени. Комбинированный расцепитель должен срабатывать с обратнозависимой от тока выдержкой времени при перегрузке и без выдержки времени при коротких замыканиях. Ток уставки расцепителей не регулируют.

В каждом полюсе автомата смонтирован свой тепловой элемент, воздействующий на общий расцепитель автомата. Чтобы убедиться в правильности действия всех тепловых элементов, необходимо проверить каждый из них в отдельности. При одновременной проверке большого количества, автоматов испытание тепловых элементов по начальному току срабатывания нецелесообразно, т.к. на проверку каждого автомата затрачивается несколько часов.

Читайте также:
Скважины на воду: виды, типы и разновидности

В связи с этим тепловые элементы рекомендуется проверять испытательным током, равным двух- и трехкратному номинальному току расцепителя при одновременной нагрузке испытательным током всех полюсов автоматов.

Если тепловой элемент не срабатывает, то автомат к эксплуатации не пригоден и дальнейшим испытаниям не подлежит. У всех тепловых элементов, должны быть проверены тепловые характеристики при одновременной нагрузке испытательным током всех полюсов автомата. Для этого все полюса автомата соединяют последовательно.

При проверке электромагнитных расцепителей, не имеющих тепловых элементов, автомат включают вручную, присоединяя к одному из полюсов нагрузочное устройство. Устанавливается такая величина испытательного тока, при которой автомат отключится.

После отключения автомата ток снижают до нуля и в указанном порядке проверяют электромагнитные элементы в остальных полюсах автомата.

Время срабатывания автомата определяется по шкале секундомера. Время — токовые характеристики срабатывания расцепителей автоматических выключателей должны соответствовать калибровкам и паспортным данным завода изготовителя. Проверка срабатывания электромагнитных и тепловых расцепителей АВ в объеме 30%, из них 15% наиболее удаленных от ВРУ квартир. При несрабатывании 10% проверяемых АВ, производится проверка срабатывания всех 100% АВ.

Неисправность автоматического выключателя в щитке

Электрика хороша до тех пор, пока исправно работает. Любая неисправность в электрике ставят в тупик большинство людей на планете. В этой статье посмотрим как определить неисправность автоматического выключателя и на способы её устранения.

Кстати, не всегда всё работает, как должно не только в электрике. Ремонт помогающей нам техники, такой же рабочий процесс, просо к нему нужно быть готовым. Относится это и к дорожно-строительной технике. Поможет в ремонте дорожно-строительной техники надёжный поставщик запчастей с широким ассортиментом запчастей для большинства мировых производителей. Где его найти? Попробуйте на сайте arsenal-zapchast.ru. Не пожалеете, там запчасти для 13 марок ведущих производителей строительно-дорожной техники.

Автоматический выключатель и короткое замыкание

Начну сначала. Автоматический выключатель или автомат защиты предназначен для защиты электропроводки ( кабелей и проводов электропроводки) помещения от короткого замыкания и перегрузки. Короткое замыкание приводит к моментальному возникновению в электросети сверхтоков (токов на порядки превышающие рабочие токи).

Любой сверхток, а в квартирных цепях это 1,8-12,6 кАмпер, по законам физики приводит к выделению колоссальной тепловой энергии. Эту энергию не может выдержать не один бытовой контакт, и в месте короткого замыкания происходит вспышка или так называемая электрическая дуга. Если быстро не отключить электропитание аварийной сети, то очень велика вероятность пожара, а еще хуже, поражения человека сверхтоками КЗ.

Для защиты от короткого замыкания, а именно для моментального отключения аварийной сети и служат автоматические выключатели (автоматы защиты). Отмечу, что отключение происходит не моментально, а за время безопасного контакта. Это менее 0,1 сек.

Автоматический выключатель и перегрузка

Второе назначение автоматического выключателя это защита от перегрузки. В устройстве автоматического выключателя есть биметаллическая пластина (тепловой расцепитель), перегрев которого отключает электроцепь от питания. Перегрев пластины происходит при перегрузки в сети. Понятно, что нагрев и соответственно отключение цепи происходит не мгновенно, а через некоторое время. В зависимости от прогрева автомата защиты это время может быть менее секунды или несколько десятков секунд.

Ревизия электрощита своими руками

Переходим к неисправностям электрики квартиры.

Неисправность автоматического выключателя в электросети

У вас периодически выбивает автоматический выключатель. Вероятностные причины этого в следующем:

  • Короткое замыкание в цепи;
  • Перегрузка в сети;
  • Повреждение проводов периодически приводящие или к короткому замыканию или перегрузке.

Для начала нужно диагностировать электрическую сеть на перегрузку и короткое замыкание. Если этих неисправностей не обнаружено, а автомат все равно отключается, то очень вероятна неисправность самого автоматического выключателя.

Проверка автоматического выключателя

Сделайте элементарную проверку автоматического выключателя.

  • Отключите электропитание квартирного щитка;
  • Отключите все автоматы защиты;
  • Пощелкайте рычаг взвода автоматического выключателя. Он должен включаться и выключаться с характерным звуком «щелк».
  • Если щелчка не слышно автомат неисправен и требует замены.
  • Если щелчок есть, измерительным прибором измерьте сопротивление между клеммами автомата защиты. При «вкл.» автомата сопротивление должно быть близко к нулю. При «выкл.» автомата сопротивление должно быть близко к бесконечности.

Однако даже если диагностика автомата показала, что автомат исправен это не значит, что исправна уставка (тепловой расцепитель) автомата защиты.

Вообще говоря, заводская неисправность автоматических выключателей не такая уж редкость и выбор автомата защиты имеет важное значение. Что уж говорить о возникающих неисправностях автоматов в процессе работы.

Например, сработал автомат пару раз и вышел из строя. Или «пережил» слишком большой сверхток и вышел из строя.

Читайте также:
Покрыть крышу профнастилом своими руками

Нельзя исключать неисправность самого автомата защиты, как основной причиной его периодического отключения.

Совет, поменяйте автомат защиты на новый, предварительно заново сделайте расчет автомата защиты.

Установка автоматического выключателя дело простое, а такая замена может избавить вас от капитальных работ по поиску других неисправностей электрики квартиры.

Как самостоятельно проверить электросчетчик

Каждый объект, потребляющий электричество, в обязательном порядке оборудуется прибором учета электроэнергии. В соответствии с законодательством, потребитель должен содержать электросчетчик в исправном состоянии, контролировать его правильное функционирование. Поэтому при малейших подозрениях на неисправность прибора, у многих хозяев возникает вопросы, как проверить электросчетчик, можно ли сделать это самостоятельно или придется вызывать специалиста. Проверку электросчетчика необходимо производить своевременно, поскольку в случае неисправности, оплата за электричество может быть начислена совсем по другим тарифам.

  1. Основные причины для проверки электросчетчика
  2. Правильно ли подключен электросчетчик
  3. Проверка счетчика клещами и мультиметром
  4. Лампы накаливания для проверки электросчетчика

Основные причины для проверки электросчетчика

Проверку приборов учета потребленной электроэнергии необходимо выполнять периодически, в плановом порядке. Однако могут возникнуть ситуации, когда без этой процедуры просто не обойтись. Например, хозяева замечают резкое увеличение расхода электроэнергии, хотя количество людей и электроприборов в квартире осталось прежнее. Расход электричества мог не снизиться при длительном отсутствии или он уменьшился несущественно.

В некоторых случаях потребители просто забывают о работе кондиционера в летнее время и обогревателя – в зимнее. Поэтому, прежде чем бить тревогу, нужно все внимательно проверить и обратить особое внимание на действующие электроприборы. Только после этого рекомендуется выполнять проверку электросчетчика, которая может быть выполнена различными способами.

Правильно ли подключен электросчетчик

Прежде чем проверять электросчетчик самостоятельно, необходимо выяснить, правильно ли выполнено его подключение. В городских квартирах питание осуществляется через однофазные сети, поэтому в качестве примера рекомендуется рассматривать однофазный счетчик.

Подключение проводников выполняется через четыре клеммы, пронумерованные 1,2,3,4. Фазный провод подводится к счетчику от основной линии к клемме № 1. Из клеммы № 2 он выходит далее в сторону помещений. Соответственно, нулевой проводник подключается к клемме № 3, а выходит к помещениям из клеммы № 4.

В частных домах нередко используются трехфазные счетчики. Их разница с однофазными приборами заключается только в количестве проводов и клемм. Для двух дополнительных фаз предусмотрены соответствующие входные и выходные клеммы.

Если все проводники подключены правильно, можно приступать к проверке электросчетчика на правильность показаний. В первую очередь счетчик проверяется на наличие самохода, когда показания накручиваются, даже если электроэнергия вовсе не расходуется в данный момент. Для выявления этой неисправности нужно отключить от сети всех потребителей тока. Групповые автоматы, расположенные возле счетчика также должны быть отключены. Во включенном состоянии остается лишь вводный автомат.

Количество оборотов в индукционном счетчике не должно быть больше чем 6-12 раз в течение часа. Чем меньше оборотов, тем лучше. У электронных счетчиков подсчитываются вспышки индикатора. Если количество вспышек превышает 12, следует переходить к более серьезным методам проверки.

Проверка счетчика клещами и мультиметром

Токоизмерительные клещи относятся к профессиональному инструменту и как правило не приобретаются для одноразовой проверки. Тем не менее, рекомендуется попросить его на время у знакомых, поскольку данный способ обеспечивает высокую точность измерений.

Электрический ток, приводя в действие бытовые приборы, совершает определенную работу. Поэтому при выполнения проверки электросчетчика на правильность показаний, сравниваются две работы: реальная, совершаемая фактически, и расчетная, результаты которой показывает счетное устройство. В качестве единицы измерения используются ватт-часы.

Фактическая работа при наличии однофазного счетчика происходит следующим образом:

  • Во время проверки электрического счетчика, приборы должны работать. Для замеров силы тока берется фазный провод, выходящий из клеммы № 2 счетчика.
  • Одновременно измеряется напряжение. После этого сила тока умножается на напряжение, в результате получается мощность (Вт).
  • Нужно засечь секундомером время, потребное для 10 оборотов на индукционном счетчике и 10 вспышек – на электронном.
  • Мощность умножается на полученное время в секундах. Результатом является работа, измеряемая в Джоулях. Значение работы нужно разделить на 3600, в результате получится реально потребляемая мощность (Вт х ч).

В трехфазных приборах учета измерения проводятся для каждой фазы, после чего все полученные мощности суммируются. Далее нужно определить расчетную работу. Вначале нужно найти передаточное число, обозначаемое в счетчиках символами r или А. Оно показывает количество импульсов или оборотов, совершаемое при расходовании 1 кВт х ч энергии. В этом случае не требуется специальных измерений, достаточно воспользоваться формулой А2=1000n/r, в которой А2 является расчетной работой, n – число оборотов в течение времени реальной работы, r – уже упомянутое передаточное число.

Читайте также:
Проект одноэтажного дома 10х12 с отличной планировкой - лучшие идеи!

После того как были получены оба значения работ, их нужно сравнить между собой. Счетчик можно считать исправным, если расчетная работа отличается от реальной не более чем на 10 процентов. Таким образом, вопрос, как проверить работу электросчетчика однофазного, этим способом можно считать решенным. Методика проверки электросчетчика при помощи мультиметра точно такая же, как и с токоизмерительными клещами. Данный прибор считается доступным и сравнительно недорогим. Из недостатков следует отметить более низкое качество измерений и достоверности полученных результатов.

Лампы накаливания для проверки электросчетчика

Токовые клещи не всегда и не у всех могут оказаться под руками. В таких случаях при решении вопроса, как проверить правильность показаний электросчетчика, самым лучшим выходом из положения будет использование ламп накаливания с заранее известной мощностью. В качестве примера берутся пять лампочек по 100 ватт каждая. То есть, их общая мощность составляет 500 ватт.

Методика проверки состоит из следующих действий:

  • В первую очередь отключаются все электроприборы без исключения. Особое внимание нужно обратить на энергосберегающие лампы, которые категорически запрещено использовать во время проверки.
  • Перед тем как проверить работу электросчетчика, в электрощитке должны быть выключены все автоматические выключатели.
  • После этого к счетчику в цепь подключаются лампы накаливания в количестве 5 шт.
  • Далее засекается время t, в течение которого индукционный прибор совершает 10 оборотов, а импульсный – 10 вспышек. Во время проверки был получен результат 20 секунд.
  • Затем рассчитывается время Т, в течение которого совершается один полный оборот или интервал между вспышками. С этой целью t нужно разделить на 10 и получится 2 секунды. При большем количестве взятых оборотов расчеты получаются более точными.
  • При проверке счетчика электроэнергии, нужно установить значение передаточного числа, обозначенного на счетчике, как А или r. В приведенном примере оно составляет 3200.
  • Выполняется перевод мощности ламп из киловатт в ватты: 500 Вт = 0,5 кВт.

Окончательный расчет погрешности измерений выполняется по формуле: Е = (РТr/3600) х 100. Погрешность Е измеряется в процентах. Подставив имеющиеся значения, получим следующий результат: (0,5 х 2 х 3200/3600) х 100 = 11,1%. По итогам результата можно сделать вывод о некорректной работе электросчетчика, поскольку превышена его максимально допустимая погрешность, составляющая 10%. Полученные данные следует закрепить официальной проверкой, результаты которой будут обладать юридической силой.

В некоторых случаях причиной перерасхода электроэнергии становится банальное воровство со стороны соседей. Установить вора можно разными способами. Наиболее эффективный связан с выкручиванием пробок из щитка на лестничной площадке и наблюдение за ним через дверной глазок. Рано или поздно, оставшись без электричества, вор появится, чтобы узнать в чем дело. Единственным недостатком этого способа является обесточивание собственной квартиры на неопределенное время.

Установка электросчетчика в квартире

Как проверить лампочку тестером, мультиметром: пошаговая инструкция

Как проверить (прозвонить) ТЭН мультиметром

Как снимать показания электросчетчика

Стоит ли менять старый электросчетчик?

Как проверить электродвигатель: этапы проверки и выяснение неисправностей

Правильно ли работает Ваш счетчик электроэнергии? Проверяем самостоятельно в домашних условиях

Проверить правильно ли учитывает расход электроэнергии (потребление) домашний счетчик, без труда сможет любой человек, в том числе и тот, который не имеет отношения к электричеству и энергетике. Для определения корректности работы электрического счетчика и, соответственно, начислений в платежке за потребленную электроэнергию, вовсе не обязательно вызывать специалиста. Это можно сделать самостоятельно не демонтируя счетчик и не нарушая целостность контрольной пломбы.

В каких случаях может возникнуть необходимость самостоятельная проверка работы счетчика электроэнергии?

  • Вы пользуетесь электроприборами в том же режиме, как и обычно, не приобретали и не подключали новую бытовую технику, но потребление электроэнергии резко выросло.
  • Вы меньше и реже стали пользоваться электроприборами, стали экономить электроэнергию, или бываете реже дома (командировка, отпуск и т.д.), но расход электроэнергии не стал меньше.
  • У Вас нет (или не используется) бытовой техники, которая бы потребляла много электричества, но в платежках расход электроэнергии «зашкаливает», будто у Вас целыми сутками включен масляный обогреватель или кондиционер.

Основные возможные причины возникновения проблем с учетом электроэнергии счетчиком:

  • Самоход (самопроизвольное движение диска индукционного счетчика или мигание индикатора импульсов современных счетчиков без нагрузки).
  • Выход счетчика из своего класса точности (процент погрешности измерений) или неисправность счетчика, влияющая на правильность учета электроэнергии.
  • Несанкционированное подключение к Вашей электрической сети сторонней нагрузки.
Читайте также:
Окно между ванной и кухней, что с ним сделать?

Во времена СССР у всех абонентов устанавливались индукционные счетчики электроэнергии. Сейчас такие счетчики практически не используются и их место заменили современные «электронные» приборы учета с механическим отсчётным (счётным) устройством или с дисплеем (ЖКИ — жидко кристаллическим индикатором).

Чтобы проверить счетчик на «самоход» — отключаем автоматические выключатели, установленные после прибора учета. Теперь никакой нагрузки нет и счетчик должен «остановиться» (диск индукционного счетчика не вращается, индикатор импульсов электронного счетчик «замер» в том состоянии, в котором находился при отключении автоматов). Понаблюдайте за счетчиком несколько минут. Если диск индукционного счетчика, хоть и медленно, но вращается, а светодиод электронного счетчика изредка, но мигает, то необходимо вызывать представителя сбытовой компании для снятия счетчика и последующего ремонта Вашего прибора учета.

Чтобы проверить наличие несанкционированного подключения к Вашей сети сторонней нагрузки, необходимо отключить в квартире все электрическое оборудование (холодильник, телевизор и т.д.) и выключить везде освещение. Далее подходим к счетчику и смотрим на его «реакцию» (проделать такие действия необходимо несколько раз в разное время суток). Если счетчик стоИт (индикатор не мигает), то все в порядке. Если же индикатор импульсов счетчика «активно» мигает, то это говорит о том, что к Вашей электрической сети подключена сторонняя нагрузка. Например это может быть «хитроумный» сосед, который решил «повесить» на Вас часть своего расхода электроэнергии. С такими случаями несанкционированного подключения нагрузки я частенько встречался в домах советской типовой панельной серии 101 (П-101). В панелях этой серии, отверстие для установки розеток в соседних квартирах — сквозное. И некоторые «кулибины» с легкостью подключали свою розетку к соседской линии и пользовались халявной электроэнергией от соседей по полной. Бывали подобные подключения к соседской сети и непосредственно в электрическом щитке на лестничной площадке.

Чтобы проверить работает ли счетчик электроэнергии в своем классе точности (определить степень погрешности измерений), необходима электрическая лампочка накаливания, секундомер (или часы с секундной стрелкой) и информация, указанная на Вашем приборе учета.

Отключаем все электроприборы в квартире. Вкручиваем в светильник лампочку накаливания (например мощностью 95 Ватт). Включаем только эту лампочку, подходим к счетчику и замеряем время, за которое светодиодный индикатор импульсов осуществит десять «миганий» (импульсов). Время одного полного импульса — это время, когда светодиод загорелся, погас и опять загорелся. Затем смотрим на счетчике какое число импульсов даст нам учтенный счетчиком расход электроэнергии в 1 киловатт-час (то же самое, что и 1000 ватт-час). В нашем случае — это число 1600.

В результате замера мы, допустим, получили время 10-ти импульсов — 238 секунд. Так как в часе 3600 секунд, то чтобы получить количество импульсов при данной нагрузке в час, необходимо (3600/238)*10=151 (количество секунд в часе делим на количество секунд десяти импульсов и умножаем на десять импульсов). Т.е. за час у нас был бы 151 импульс за час. Теперь посчитанное количество импульсов делим на количество импульсов, указанное на счетчике и получаем расход электроэнергии при данной нагрузке за час. 151/1600=0,094 кВт*ч или 94 Вт*ч. Так оно и есть. Расход электроэнергии от лампочки мощностью 95 Ватт в течение часа и должен составить примерно 95 Вт*ч! Небольшая погрешность, конечно будет присутствовать. Полученные данные говорят о том, что наш счетчик находится в своем классе точности и считает расход электроэнергии абсолютно корректно! А вот если после расчетов Вы получите цифру, которая будет кратно больше ожидаемой, то это говорит о том, что счетчик необходимо отправить на поверку с последующим ремонтом.

Понятно, что у Вас будут свои исходные данные для расчета (мощность лампочки, время десяти импульсов, число импульсов счетчика на киловатт-час). А вот выполнить несколько математических действий, чтобы убедиться, что Ваш прибор учета считает правильно — это совсем просто! А если прибор учета считает корректно, то и оплату Вы производите только за реально потребленную электроэнергию!

Проверка электросчётчика в домашних условиях

К ак можно проверить точность работы электросчётчика, не прибегая к помощи специалистов.

Эта статья предназначена, прежде всего, для тех, кому по роду деятельности или по складу характера (а душевный комфорт – залог здорового сна) необходимо заботиться о максимальной экономии электрической энергии.

Итак, если вы видите, подозреваете, что ваш счётчик считает неверно, и это беспокойство усиливается, каждый раз, когда в конце месяца вы отдаёте честно заработанные деньги на оплату электроэнергии, то вам следует провести небольшое расследование в рамках своего хозяйства.

Читайте также:
Плюсы и минусы пластиковых окон

Естественно, что наиболее точный ответ по работе вашего электросчётчика дадут в метрологической лаборатории. Это стоит довольно приличных денег, да к тому же, в случае подтверждения ваших подозрений, придётся покупать новый прибор учёта. Поэтому для начала лучше проверить его своими силами. И в том случае, если вы обнаружите, что ваша переплата за электрическую энергию существенна, то со спокойной душой можете покупать новый счётчик. Но это если срок гарантии на ваш прибор уже истёк. А в период действия гарантийных обязательств вы просто идёте в магазин, продавший вам некачественный товар, и меняете его.

Ну вот вы и приняли решение о правильности учёта расхода электрической энергии. С чего же начать? Для крупных промышленных предприятий всё просто – у них есть собственные метрологические службы. Этот вариант мы и не рассматриваем. Если же вы связаны с электрохозяйством непроизводственной организации или производственной, но недостаточно большой, чтобы иметь хорошую службу электриков, то вам необходимо сделать следующее.

Приобретите токоизмерительные клещи. Очень полезный инструмент. С его помощью вы всегда можете контролировать нагрузку в ваших сетях. В нашем случае клещи понадобятся для точного определения фактической мощности тока, проходящего через счётчик (или через трансформаторы тока, к которым подключен счётчик).

Для обычных же граждан, желающих разобраться с расходом электроэнергии у себя дома, но не имеющих желания покупать для этого какие бы то ни было устройства, клещи приобретать не обязательно. Мы рассмотрим оба случая.

Итак, мы готовы начать наши опыты. Что представляет из себя проверка электросчётчика? Ответ очевиден – это сравнение реального (фактического) потребления электроэнергии с теми цифрами, которые нам показывает табло или циферблат счётчика.

Реальное потребление мы с достаточной точностью можем измерить только на довольно непродолжительном отрезке времени, потому что нагрузка постоянно меняется, в зависимости от деятельности человека. Поэтому при проверке счётчика измеряют мгновенную (то есть действующую в данный момент времени) нагрузку. Это делается двумя способами:

1. С помощью токоизмерительных клещей.

2. С помощью подключения приборов заведомо известной мощности.

В первом случае измеряется ток, проходящий в каждой фазе сети, в которую включён счётчик. Токи всех задействованных фаз суммируются, полученная сумма умножается на 220 – получили действующую нагрузку.

Если нет токоизмерительных клещей, то нужно включить только те приборы, мощность которых нам известна довольно точно. Это обычные лампы накаливания, электрочайник и т.п. Но никаких энергосберегающих ламп и электродвигателей! Они искажают реальную картину. Не электрику это трудно понять, но поверьте – это так.

В общем, включите как можно больше ламп накаливания и сложите их номинальные мощности. Всё остальное должно быть отключено. Вот мы и измерили реальную нагрузку в данный момент времени. Осталось выяснить, с чем же её сравнивать. На лицевой панели счётчика вы найдёте все необходимые для анализа его работы данные. Это:

– вращающийся диск, либо пульсирующая лампочка (индикатор);

– передаточное число счётчика – обозначается буквой r или буквой А.

Теперь нам понадобится секундомер. С помощью секундомера измеряем время полного оборота диска или время, за которое индикатор произведёт определённое количество импульсов (число импульсов выбираем в зависимости от интенсивности – чем чаще мигает, тем больше импульсов нужно взять для большей точности измерения). Так мы производим измерение нагрузки, которую учитывает счётчик. Эти замеры нужно производить, по возможности, одновременно с измерением реальной нагрузки.

Теперь поясним, как по измеренному времени определить нагрузку. Что такое передаточный коэффициент? Это число оборотов диска или импульсов индикатора, за которое счётчик насчитает один киловатт*час. Чтобы определить мгновенную нагрузку, учитываемую счётчиком, нужно воспользоваться следующей формулой:

где: T – время, за которое произойдёт N импульсов (оборотов), измеряется в секундах;

A – передаточное число счётчика.

Вот и всё. Теперь сравниваем результаты обоих измерений. Если есть заметная разница, то производим замеры ещё несколько раз, чтобы исключить все ошибки измерений. Если результат подтвердился, производим экономический расчёт и решаем, стоит ли тратиться на новый электросчётчик. Всё довольно просто, если разобраться. Нужно лишь желание. Экономьте в своё удовольствие!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: